期刊论文详细信息
BMC Genomics
Proteomic and metabolomic analysis of the carotenogenic yeast Xanthophyllomyces dendrorhous using different carbon sources
Víctor Cifuentes2  Marcelo Baeza2  Jennifer Alcaíno2  Karsten Niehaus1  Pilar Martinez-Moya2 
[1] Department of Proteome and Metabolome Research, Faculty of Biology, Bielefeld University, Bielefeld, Germany;Departamento de Ciencias Ecológicas, Centro de Biotecnologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
关键词: ROS;    Astaxanthin;    Carbon source;    Metabolomics;    Carotenogenesis;    Proteomics;   
Others  :  1173985
DOI  :  10.1186/s12864-015-1484-6
 received in 2014-10-27, accepted in 2015-03-25,  发布年份 2015
PDF
【 摘 要 】

Background

Astaxanthin is a potent antioxidant with increasing biotechnological interest. In Xanthophyllomyces dendrorhous, a natural source of this pigment, carotenogenesis is a complex process regulated through several mechanisms, including the carbon source. X. dendrorhous produces more astaxanthin when grown on a non-fermentable carbon source, while decreased astaxanthin production is observed in the presence of high glucose concentrations. In the present study, we used a comparative proteomic and metabolomic analysis to characterize the yeast response when cultured in minimal medium supplemented with glucose (fermentable) or succinate (non-fermentable).

Results

A total of 329 proteins were identified from the proteomic profiles, and most of these proteins were associated with carotenogenesis, lipid and carbohydrate metabolism, and redox and stress responses. The metabolite profiles revealed 92 metabolites primarily associated with glycolysis, the tricarboxylic acid cycle, amino acids, organic acids, sugars and phosphates. We determined the abundance of proteins and metabolites of the central pathways of yeast metabolism and examined the influence of these molecules on carotenogenesis.

Similar to previous proteomic-stress response studies, we observed modulation of abundance from several redox, stress response, carbohydrate and lipid enzymes. Additionally, the accumulation of trehalose, absence of key ROS response enzymes, an increased abundance of the metabolites of the pentose phosphate pathway and tricarboxylic acid cycle suggested an association between the accumulation of astaxanthin and oxidative stress in the yeast. Moreover, we observed the increased abundance of late carotenogenesis enzymes during astaxanthin accumulation under succinate growth conditions.

Conclusions

The use of succinate as a carbon source in X. dendrorhous cultures increases the availability of acetyl-CoA for the astaxanthin production compared with glucose, likely reflecting the positive regulation of metabolic enzymes of the tricarboxylic acid and glyoxylate cycles. The high metabolite level generated in this pathway could increase the cellular respiration rate, producing reactive oxygen species, which induces carotenogenesis.

【 授权许可】

   
2015 Martinez-Moya et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150423025748385.pdf 3029KB PDF download
Figure 5. 67KB Image download
Figure 4. 143KB Image download
Figure 3. 146KB Image download
Figure 2. 112KB Image download
Figure 1. 32KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Schmidt I, Schewe H, Gassel S, Jin C, Buckingham J, Humbelin M, et al.: Biotechnological production of astaxanthin with Phaffia rhodozyma/Xanthophyllomyces dendrorhous. Appl Microbiol Biotechnol 2011, 89:555-71.
  • [2]Rodriguez-Saiz M, de la Fuente JL, Barredo JL: Xanthophyllomyces dendrorhous for the industrial production of astaxanthin. Appl Microbiol Biotechnol 2010, 88:645-58.
  • [3]Loto I, Gutiérrez MS, Barahona S, Sepúlveda D, Martínez-Moya P, Baeza M, et al.: Enhancement of carotenoid production by disrupting the C22-sterol desaturase gene (CYP61) in Xanthophyllomyces dendrorhous. BMC Microbiol 2012, 12:235. BioMed Central Full Text
  • [4]Contreras G, Barahona S, Rojas MC, Baeza M, Cifuentes V, Alcaíno J: Increase in the astaxanthin synthase gene (crtS) dose by in vivo DNA fragment assembly in Xanthophyllomyces dendrorhous. BMC Biotechnol 2013, 13:84. BioMed Central Full Text
  • [5]Stachowiak B: Astaxanthin synthesis by Xanthophyllomyces dendrorhous DSM 5626 and its astaxanthin overproducing mutants on xylose media under different illumination. Acta Sci Pol Technol Aliment 2014, 13:279-88.
  • [6]Gassel S, Breitenbach J, Sandmann G: Genetic engineering of the complete carotenoid pathway towards enhanced astaxanthin formation in Xanthophyllomyces dendrorhous starting from a high-yield mutant. Appl Microbiol Biotechnol 2014, 98:345-50.
  • [7]Goldstein JL, Brown MS: Regulation of the mevalonate pathway. Nature 1990, 343:425-30.
  • [8]Alcaíno J, Romero I, Niklitschek M, Sepúlveda D, Rojas MC, Baeza M, et al.: Functional characterization of the Xanthophyllomyces dendrorhous farnesyl pyrophosphate synthase and geranylgeranyl pyrophosphate synthase encoding genes that are involved in the synthesis of isoprenoid precursors. PLoS One 2014, 9:e96626.
  • [9]Verdoes JC, Krubasik P, Sandmann G, Van Ooyen AJJ: Isolation and functional characterization of a novel type of carotenoid biosynthetic gene from Xanthophyllomyces dendrorhous. Mol Gen Genet 1999, 262:453-61.
  • [10]Verdoes JC, Misawa N, van Ooyen AJJ: Cloning and characterization of the astaxanthin biosynthetic gene encoding phytoene desaturase of Xanthophyllomyces dendrorhous. Biotechnol Bioeng 1999, 63:750-5.
  • [11]Ojima K, Breitenbach J, Visser H, Setoguchi Y, Tabata K, Hoshino T, et al.: Cloning of the astaxanthin synthase gene from Xanthophyllomyces dendrorhous (Phaffia rhodozyma) and its assignment as a beta-carotene 3-hydroxylase/4-ketolase. Mol Genet Genomics 2006, 275:148-58.
  • [12]Alcaino J, Barahona S, Carmona M, Lozano C, Marcoleta A, Niklitschek M, et al.: Cloning of the cytochrome p450 reductase (crtR) gene and its involvement in the astaxanthin biosynthesis of Xanthophyllomyces dendrorhous. BMC Microbiol 2008, 8:169. BioMed Central Full Text
  • [13]Schroeder WA, Johnson EA: Singlet oxygen and peroxyl radicals regulate carotenoid biosynthesis in Phaffia rhodozyma. J Biol Chem 1995, 270:18374-9.
  • [14]Wang W, Yu L: Effects of oxygen supply on growth and carotenoids accumulation by Xanthophyllomyces dendrorhous. Z Naturforsch C 2009, 64:853-8.
  • [15]Yamane Y, Higashida K, Nakashimada Y, Kakizono T, Nishio N: Influence of oxygen and glucose on primary metabolism and astaxanthin production by Phaffia rhodozyma in batch and fed-batch cultures: kinetic and stoichiometric analysis. Appl Environ Microb 1997, 63:4471-8.
  • [16]Marcoleta A, Niklitschek M, Wozniak A, Lozano C, Alcaíno J, Baeza M, et al.: Glucose and ethanol-dependent transcriptional regulation of the astaxanthin biosynthesis pathway in Xanthophyllomyces dendrorhous. BMC Microbiol 2011, 11:190. BioMed Central Full Text
  • [17]Martínez-Moya P, Watt SA, Niehaus K, Alcaíno J, Baeza M, Cifuentes V: Proteomic analysis of the carotenogenic yeast Xanthophyllomyces dendrorhous. BMC Microbiol 2011, 11:131. BioMed Central Full Text
  • [18]Wozniak A, Lozano C, Barahona S, Niklitschek M, Marcoleta A, Alcaíno J, et al.: Differential carotenoid production and gene expression in Xanthophyllomyces dendrorhous grown in a nonfermentable carbon source. FEMS Yeast Res 2011, 11:252-62.
  • [19]Weeks ME, Sinclair J, Butt A, Chung YL, Worthington JL, Wilkinson CR, et al.: A parallel proteomic and metabolomic analysis of the hydrogen peroxide- and Sty1p-dependent stress response in Schizosaccharomyces pombe. Proteomics 2006, 6:2772-96.
  • [20]Wang SB, Chen F, Sommerfeld M, Hu Q: Proteomic analysis of molecular response to oxidative stress by the green alga Haematococcus pluvialis (Chlorophyceae). Planta 2004, 220:17-29.
  • [21]Braconi D, Bernardini G, Possenti S, Laschi M, Arena S, Scaloni A, et al.: Proteomics and redox-proteomics of the effects of herbicides on a wild-type wine Saccharomyces cerevisiae strain. J Proteome Res 2009, 8:256-67.
  • [22]Díaz-Ruiz R, Avéret N, Araiza D, Pinson B, Uribe-Carvajal S, Devin A, et al.: Mitochondrial oxidative phosphorylation is regulated by fructose 1,6-bisphosphate. A possible role in Crabtree effect induction? J Biol Chem 2008, 283:26948-55.
  • [23]Salusjärvi L, Kankainen M, Soliymani R, Pitkänen JP, Penttilä M, Ruohonen L: Regulation of xylose metabolism in recombinant Saccharomyces cerevisiae. Microb Cell Fact 2008, 7:18. BioMed Central Full Text
  • [24]Kolkman A, Olsthoorn MM, Heeremans CE, Heck AJ, Slijper M: Comparative proteome analysis of Saccharomyces cerevisiae grown in chemostat cultures limited for glucose or ethanol. Mol Cell Proteom 2005, 4:1-11.
  • [25]Giardina BJ, Stanley BA, Chiang HL: Comparative proteomic analysis of transition of Saccharomyces cerevisiae from glucose-deficient medium to glucose-rich medium. Proteome Sci 2012, 10:40. BioMed Central Full Text
  • [26]Kusch H, Engelmann S, Bode R, Albrecht D, Morschhauser J, Hecker M: A proteomic view of Candida albicans yeast cell metabolism in exponential and stationary growth phases. Int J Med Microbiol 2008, 298:291-318.
  • [27]Celton M, Sanchez I, Goelzer A, Fromion V, Camarasa C, Dequin S: A comparative transcriptomic, fluxomic and metabolomic analysis of the response of Saccharomyces cerevisiae to increases in NADPH oxidation. BMC Genomics 2012, 13:317. BioMed Central Full Text
  • [28]Missall TA, Pusateri ME, Donlin MJ, Chambers KT, Corbett JA, Lodge JK: Posttranslational, translational, and transcriptional responses to nitric oxide stress in Cryptococcus neoformans: implications for virulence. Eukaryot Cell 2006, 5:518-29.
  • [29]Pandolfi PP, Sonati F, Rivi R, Mason P, Grosveld F, Luzzatto L: Targeted disruption of the housekeeping gene encoding glucose 6-phosphate dehydrogenase (G6PD): G6PD is dispensable for pentose synthesis but essential for defense against oxidative stress. Embo J 1995, 14:5209-15.
  • [30]Zoccarato F, Cavallini L, Bortolami S, Alexandre A: Succinate modulation of H2O2 release at NADH:ubiquinone oxidoreductase (Complex I) in brain mitochondria. Biochem J 2007, 406:125-9.
  • [31]Flores-Cotera LB, Martín R, Sánchez S: Citrate a possible precursor of astaxanthin in Phaffia rhodozyma: influence of varying levels of ammonium, phosphate and citrate in a chemically defined medium. Appl Microbiol Biotechnol 2001, 55:341-7.
  • [32]Cannizzaro C, Christensen B, Nielsen J, Stockar U: Metabolic network analysis on Phaffia rhodozyma yeast using 13C-labeled glucose and gas chromatography–mass spectrometry. Metab Eng 2004, 6:340-51.
  • [33]Beopoulos A, Chardot T, Nicaud JM: Yarrowia lipolytica: A model and a tool to understand the mechanisms implicated in lipid accumulation. Biochimie 2009, 91:692-6.
  • [34]Miao L, Chi S, Tang Y, Su Z, Yin T, Guan G, et al.: Astaxanthin biosynthesis is enhanced by high carotenogenic gene expression and decrease of fatty acids and ergosterol in a Phaffia rhodozyma mutant strain. FEMS Yeast Res 2011, 11:192-201.
  • [35]Hynes MJ, Murray SL: ATP-citrate lyase is required for production of cytosolic acetyl coenzyme A and development in Aspergillus nidulans. Eukaryot Cell 2010, 9:1039-48.
  • [36]Chen Y, Siewers V, Nielsen J: Profiling of cytosolic and peroxisomal acetyl-CoA metabolism in Saccharomyces cerevisiae. PLoS One 2012, 7:e42475.
  • [37]Lee S, Son H, Lee J, Min K, Choi GJ, Kim JC, et al.: Functional analyses of two acetyl coenzyme A synthetases in the ascomycete Gibberella zeae. Eukaryot Cell 2011, 10:1043-52.
  • [38]Cabrera C, Flores-Bustamante ZR, Marsch R, Montes M Del C, Sánchez S, Cancino-Díaz JC, et al.: ATP-citrate lyase activity and carotenoid production in batch cultures of Phaffia rhodozyma under nitrogen-limited and nonlimited conditions. Appl Microbiol Biotechnol 2010, 85:1953-60.
  • [39]Lin AP, Anderson SL, Minard KI, McAlister-Henn L: Effects of excess succinate and retrograde control of metabolite accumulation in yeast tricarboxylic cycle mutants. J Biol Chem 2011, 286:33737-46.
  • [40]Gessler NN, Aver’yanov AA, Belozerskaya TA: Reactive oxygen species in regulation of fungal development. Biochemistry (Mosc) 2007, 72:1091-109.
  • [41]Folch-Mallol JL, Garay-Arroyo A, Lledías F, Covarrubias Robles AA: The stress response in the yeast Saccharomyces cerevisiae. Rev Latinoam Microbiol 2004, 46:24-46.
  • [42]Cash TP, Pan Y, Simon MC: Reactive oxygen species and cellular oxygen sensing. Free Radic Biol Med 2007, 43:1219-25.
  • [43]Herrero E, Ros J, Bellí G, Cabiscol E: Redox control and oxidative stress in yeast cells. Biochim Biophys Acta 2008, 1780:1217-35.
  • [44]Pereira EJ, Panek AD, Eleutherio ECA: Protection against oxidation during dehydration of yeast. Cell Stress Chaperones 2003, 8:120-4.
  • [45]Voit EO: Biochemical and genomic regulation of the trehalose cycle in yeast: review of observations and canonical model analysis. J Theor Biol 2003, 223:55-78.
  • [46]Valadi H, Valadi A, Ansell R, Gustafsson L, Adler L, Norbeck J, et al.: NADH-reductive stress in Saccharomyces cerevisiae induces the expression of the minor isoform of glyceraldehyde-3-phosphate dehydrogenase (TDH1). Curr Genet 2004, 45:90-5.
  • [47]Causton HC, Ren B, Koh SS, Harbison CT, Kanin E, Jennings EG, et al.: Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell 2001, 12:323-37.
  • [48]Chen D, Toone WM, Mata J, Lyne R, Burns G, Kivinen K, et al.: Global transcriptional responses of fission yeast to environmental stress. Mol Biol Cell 2003, 14:214-29.
  • [49]Yin Z, Stead D, Walker J, Selway L, Smith DA, Brown AJ, et al.: A proteomic analysis of the salt, cadmium and peroxide stress responses in Candida albicans and the role of the Hog1 stress-activated MAPK in regulating the stress-induced proteome. Proteomics 2009, 9:4686-703.
  • [50]Rauthan M, Pilon M: The mevalonate pathway in C. elegans. Lipids Health Dis 2011, 10:243-54. BioMed Central Full Text
  • [51]Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B 1995, 57:289-300.
  • [52]Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database [http://www.genome.ad.jp/kegg/pathway.html].
  • [53]Koning W, van Dam K: A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH. Anal Biochem 1992, 204:118-23.
  • [54]Roessner U, Wagner C, Kopka J, Trethewey RN, Willmitzer L: Technical advance: simultaneous analysis of metabolites in potato tuber by gas chromatography–mass spectrometry. Plant J 2000, 23:131-42.
  • [55]An G-H, Schuman DB, Johnson E: Isolation of Phaffia rhodozyma mutants with increased astaxanthin content. Appl Environ Microbiol 1989, 55:116-24.
  文献评价指标  
  下载次数:88次 浏览次数:13次