期刊论文详细信息
BMC Microbiology
RpoS integrates CRP, Fis, and PhoP signaling pathways to control Salmonella Typhi hlyE expression
Juan A Fuentes1  Guido C Mora2  Alejandro A Hidalgo2  Nicolás A Villagra3  Leonardo M Rodríguez3  Matías R Jofré3 
[1] Laboratorio de Microbiología, Universidad Andres Bello, República 217, 2° Piso, Santiago, Chile;Facultad de Medicina, Universidad Andres Bello, Santiago, Chile;Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
关键词: Catabolite repression;    Fis protein;    cAMP-receptor protein;    phoP;    rpoS;    hlyE;   
Others  :  1140993
DOI  :  10.1186/1471-2180-14-139
 received in 2013-12-03, accepted in 2014-05-21,  发布年份 2014
PDF
【 摘 要 】

Background

SPI-18 is a pathogenicity island found in some Salmonella enterica serovars, including S. Typhi. SPI-18 harbors two ORFs organized into an operon, hlyE and taiA genes, both implicated in virulence. Regarding the hlyE regulation in S. Typhi, it has been reported that RpoS participates as transcriptional up-regulator under low pH and high osmolarity. In addition, CRP down-regulates hlyE expression during exponential growth. Previously, it has been suggested that there is another factor related to catabolite repression, different from CRP, involved in the down-regulation of hlyE. Moreover, PhoP-dependent hlyE up-regulation has been reported in bacteria cultured simultaneously under low pH and low concentration of Mg2+. Nevertheless, the relative contribution of each environmental signal is not completely clear. In this work we aimed to better understand the regulation of hlyE in S. Typhi and the integration of different environmental signals through global regulators.

Results

We found that Fis participates as a CRP-independent glucose-dependent down-regulator of hlyE. Also, Fis and CRP seem to exert the repression over hlyE through down-regulating rpoS. Moreover, PhoP up-regulates hlyE expression via rpoS under low pH and low Mg2+ conditions.

Conclusions

All these results together show that, at least under the tested conditions, RpoS is the central regulator in the hlyE regulatory network, integrating multiple environmental signals and global regulators.

【 授权许可】

   
2014 Jofré et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150325173650855.pdf 813KB PDF download
Figure 4. 42KB Image download
Figure 3. 69KB Image download
Figure 2. 88KB Image download
Figure 1. 85KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Brenner FW, Villar RG, Angulo FJ, Tauxe R, Swaminathan B: Salmonella nomenclature. J Clin Microbiol 2000, 38(7):2465-2467.
  • [2]Porwollik S, Boyd EF, Choy C, Cheng P, Florea L, Proctor E, McClelland M: Characterization of Salmonella enterica subspecies I genovars by use of microarrays. J Bacteriol 2004, 186(17):5883-5898.
  • [3]Pascopella L, Raupach B, Ghori N, Monack D, Falkow S, Small PL: Host restriction phenotypes of Salmonella typhi and Salmonella gallinarum. Infect Immun 1995, 63(11):4329-4335.
  • [4]Barrow PA, Huggins MB, Lovell MA: Host specificity of Salmonella infection in chickens and mice is expressed in vivo primarily at the level of the reticuloendothelial system. Infect Immun 1994, 62(10):4602-4610.
  • [5]Rychlik I, Barrow PA: Salmonella stress management and its relevance to behaviour during intestinal colonisation and infection. FEMS Microbiol Rev 2005, 29(5):1021-1040.
  • [6]Altier C: Genetic and environmental control of Salmonella invasion. J Microbiol 2005, 43 Spec No:85-92.
  • [7]Ochman H, Soncini FC, Solomon F, Groisman EA: Identification of a pathogenicity island required for Salmonella survival in host cells. Proc Natl Acad Sci U S A 1996, 93(15):7800-7804.
  • [8]Deiwick J, Hensel M: Regulation of virulence genes by environmental signals in Salmonella typhimurium. Electrophoresis 1999, 20(4–5):813-817.
  • [9]Brawn LC, Hayward RD, Koronakis V: Salmonella SPI1 effector SipA persists after entry and cooperates with a SPI2 effector to regulate phagosome maturation and intracellular replication. Cell Host Microbe 2007, 1(1):63-75.
  • [10]Fuentes JA, Villagra N, Castillo-Ruiz M, Mora GC: The Salmonella Typhi hlyE gene plays a role in invasion of cultured epithelial cells and its functional transfer to S. Typhimurium promotes deep organ infection in mice. Res Microbiol 2008, 159(4):279-287.
  • [11]Faucher SP, Forest C, Beland M, Daigle F: A novel PhoP-regulated locus encoding the cytolysin ClyA and the secreted invasin TaiA of Salmonella enterica serovar Typhi is involved in virulence. Microbiology 2009, 155(Pt 2):477-488.
  • [12]Wai SN, Lindmark B, Soderblom T, Takade A, Westermark M, Oscarsson J, Jass J, Richter-Dahlfors A, Mizunoe Y, Uhlin BE: Vesicle-mediated export and assembly of pore-forming oligomers of the enterobacterial ClyA cytotoxin. Cell 2003, 115(1):25-35.
  • [13]von Rhein C, Hunfeld KP, Ludwig A: Serologic evidence for effective production of cytolysin A in Salmonella enterica serovars typhi and paratyphi A during human infection. Infect Immun 2006, 74(11):6505-6508.
  • [14]Fuentes JA, Jofre MR, Villagra NA, Mora GC: RpoS- and Crp-dependent transcriptional control of Salmonella Typhi taiA and hlyE genes: role of environmental conditions. Res Microbiol 2009, 160(10):800-808.
  • [15]Kolb A, Busby S, Buc H, Garges S, Adhya S: Transcriptional regulation by cAMP and its receptor protein. Annu Rev Biochem 1993, 62:749-795.
  • [16]Westermark M, Oscarsson J, Mizunoe Y, Urbonaviciene J, Uhlin BE: Silencing and activation of ClyA cytotoxin expression in Escherichia coli. J Bacteriol 2000, 182(22):6347-6357.
  • [17]Azam TA, Ishihama A: Twelve species of the nucleoid-associated protein from Escherichia coli. Sequence recognition specificity and DNA binding affinity. J Biol Chem 1999, 274(46):33105-33113.
  • [18]McLeod SM, Johnson RC: Control of transcription by nucleoid proteins. Curr Opin Microbiol 2001, 4(2):152-159.
  • [19]Hirsch M, Elliott T: Fis regulates transcriptional induction of RpoS in Salmonella enterica. J Bacteriol 2005, 187(5):1568-1580.
  • [20]Browning DF, Grainger DC, Beatty CM, Wolfe AJ, Cole JA, Busby SJ: Integration of three signals at the Escherichia coli nrf promoter: a role for Fis protein in catabolite repression. Mol Microbiol 2005, 57(2):496-510.
  • [21]Galan B, Manso I, Kolb A, Garcia JL, Prieto MA: The role of FIS protein in the physiological control of the expression of the Escherichia coli meta-hpa operon. Microbiology 2008, 154(Pt 7):2151-2160.
  • [22]Uzzau S, Figueroa-Bossi N, Rubino S, Bossi L: Epitope tagging of chromosomal genes in Salmonella. Proc Natl Acad Sci U S A 2001, 98(26):15264-15269.
  • [23]Toro CS, Mora GC, Figueroa-Bossi N: Gene transfer between related bacteria by electrotransformation: mapping Salmonella typhi genes in Salmonella typhimurium. J Bacteriol 1998, 180(17):4750-4752.
  • [24]Lee HJ, Park SJ, Choi SH, Lee KH: Vibrio vulnificus rpoS expression is repressed by direct binding of cAMP-cAMP receptor protein complex to its two promoter regions. J Biol Chem 2008, 283(45):30438-30450.
  • [25]Cheng Y, Sun B: Polyphosphate kinase affects oxidative stress response by modulating cAMP receptor protein and rpoS expression in Salmonella typhimurium. J Microbiol Biotechnol 2009, 19(12):1527-1535.
  • [26]Navarro Llorens JM, Tormo A, Martinez-Garcia E: Stationary phase in gram-negative bacteria. FEMS Microbiol Rev 2010, 34(4):476-495.
  • [27]Hengge-Aronis R: Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev 2002, 66(3):373-395. table of contents
  • [28]Donovan GT, Norton JP, Bower JM, Mulvey MA: Adenylate cyclase and the cyclic AMP receptor protein modulate stress resistance and virulence capacity of uropathogenic Escherichia coli. Infect Immun 2013, 81(1):249-258.
  • [29]Chen ZW, Hsuan SL, Liao JW, Chen TH, Wu CM, Lee WC, Lin CC, Liao CM, Yeh KS, Winton JR, Huang C, Chien MS: Mutations in the Salmonella enterica serovar Choleraesuis cAMP-receptor protein gene lead to functional defects in the SPI-1 Type III secretion system. Vet Res 2010, 41(1):5.
  • [30]Garmory HS, Brown KA, Titball RW: Salmonella vaccines for use in humans: present and future perspectives. FEMS Microbiol Rev 2002, 26(4):339-353.
  • [31]Zhang X, Kelly SM, Bollen WS, Curtiss R 3rd: Characterization and immunogenicity of Salmonella typhimurium SL1344 and UK-1 delta crp and delta cdt deletion mutants. Infect Immun 1997, 65(12):5381-5387.
  • [32]Rosu V, Chadfield MS, Santona A, Christensen JP, Thomsen LE, Rubino S, Olsen JE: Effects of crp deletion in Salmonella enterica serotype Gallinarum. Acta Vet Scand 2007, 49:14.
  • [33]Tu X, Latifi T, Bougdour A, Gottesman S, Groisman EA: The PhoP/PhoQ two-component system stabilizes the alternative sigma factor RpoS in Salmonella enterica. Proc Natl Acad Sci U S A 2006, 103(36):13503-13508.
  • [34]Audia JP, Foster JW: Acid shock accumulation of sigma S in Salmonella enterica involves increased translation, not regulated degradation. J Mol Microbiol Biotechnol 2003, 5(1):17-28.
  • [35]Garcia Vescovi E, Soncini FC, Groisman EA: Mg2+ as an extracellular signal: environmental regulation of Salmonella virulence. Cell 1996, 84(1):165-174.
  • [36]Söderblom T, Oxhamre C, Wai SN, Uhlen P, Aperia A, Uhlin BE, Richter-Dahlfors A: Effects of the Escherichia coli toxin cytolysin A on mucosal immunostimulation via epithelial Ca2+ signalling and Toll-like receptor 4. Cell Microbiol 2005, 7(6):779-788.
  • [37]Hertle R, Schwarz H: Serratia marcescens internalization and replication in human bladder epithelial cells. BMC Infect Dis 2004, 4:16.
  • [38]Strauss EJ, Ghori N, Falkow S: An Edwardsiella tarda strain containing a mutation in a gene with homology to shlB and hpmB is defective for entry into epithelial cells in culture. Infect Immun 1997, 65(9):3924-3932.
  • [39]Wood GE, Dutro SM, Totten PA: Target cell range of Haemophilus ducreyi hemolysin and its involvement in invasion of human epithelial cells. Infect Immun 1999, 67(8):3740-3749.
  • [40]Bajaj V, Lucas RL, Hwang C, Lee CA: Co-ordinate regulation of Salmonella typhimurium invasion genes by environmental and regulatory factors is mediated by control of hilA expression. Mol Microbiol 1996, 22(4):703-714.
  • [41]Eriksson S, Lucchini S, Thompson A, Rhen M, Hinton JC: Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol Microbiol 2003, 47(1):103-118.
  • [42]Rhen M: Hierarchical gene regulators adapt to its host milieus. Int J Med Microbiol 2005, 294(8):487-502.
  • [43]Faucher SP, Porwollik S, Dozois CM, McClelland M, Daigle F: Transcriptome of Salmonella enterica serovar Typhi within macrophages revealed through the selective capture of transcribed sequences. Proc Natl Acad Sci U S A 2006, 103(6):1906-1911.
  • [44]Datsenko KA, Wanner BL: One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 2000, 97(12):6640-6645.
  • [45]Santiviago CA, Toro CS, Bucarey SA, Mora GC: A chromosomal region surrounding the ompD porin gene marks a genetic difference between Salmonella typhi and the majority of Salmonella serovars. Microbiology 2001, 147(Pt 7):1897-1907.
  • [46]Pfaffl MW: A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001, 29(9):e45.
  • [47]Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227(5259):680-685.
  • [48]Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72:248-254.
  文献评价指标  
  下载次数:44次 浏览次数:21次