期刊论文详细信息
BMC Neuroscience
Melatonin facilitates extinction, but not acquisition or expression, of conditional cued fear in rats
Chang-Qi Li2  Xiaoyan Liu1  Zehua Yang1  Fulian Huang2 
[1] Department of Physiology, Yiyang Medical College, Yingbin Road 516, Yiyang, Hunan 413000, P.R China;Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Tongzipo Road 172, Changsha, Hunan 410013, P.R China
关键词: Rats;    PTSD;    Fear extinction;    Fear conditioning;    Cued fear;    Melatonin;   
Others  :  1091801
DOI  :  10.1186/1471-2202-15-86
 received in 2014-04-04, accepted in 2014-07-02,  发布年份 2014
PDF
【 摘 要 】

Background

Previous studies have shown that melatonin is involved in the processes that contribute to learning and memory. At present study, we tested the effects of exogenous melatonin (2.5 mg/kg) on the acquisition, expression and extinction of cued fear in rats.

Results

Results showed that a single afternoon administration 30 min before conditioning has no effect on the acquisition of cued fear. Compared to rats injected with vehicle, rats injected with melatonin 30 min before extinction training presented a significant lower freezing during both extinction training and extinction test phases, however, freezing response did not differ for the initial four trials during extinction training. Melatonin injected immediately after extinction training was ineffective on extinction learning.

Conclusions

These results suggest that melatonin, at the dose applied in this study, facilitates the extinction of conditional cued fear without affecting its acquisition or expression, and melatonin facilitates cued fear extinction only when it is present during extinction training. These findings extend previous research on the melatonin effects on learning and memory and suggest that melatonin may serve as an agent for the treatment of anxiety disorders such as posttraumatic stress disorder (PTSD).

【 授权许可】

   
2014 Huang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128174408110.pdf 449KB PDF download
Figure 3. 60KB Image download
Figure 2. 82KB Image download
Figure 1. 50KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Brzezinski A: Melatonin in humans. N Engl J Med 1997, 336(3):186-195.
  • [2]Takahashi JS, Zatz M: Regulation of circadian rhythmicity. Science 1982, 217(4565):1104-1111.
  • [3]Cajochen C, Krauchi K, Wirz-Justice A: Role of melatonin in the regulation of human circadian rhythms and sleep. J Neuroendocrinol 2003, 15(4):432-437.
  • [4]Barden N, Shink E, Labbe M, Vacher R, Rochford J, Mocaer E: Antidepressant action of agomelatine (S 20098) in a transgenic mouse model. Prog Neuropsychopharmacol Biol Psychiatry 2005, 29(6):908-916.
  • [5]Mantovani M, Pertile R, Calixto JB, Santos AR, Rodrigues AL: Melatonin exerts an antidepressant-like effect in the tail suspension test in mice: evidence for involvement of N-methyl-D-aspartate receptors and the L-arginine-nitric oxide pathway. Neurosci Lett 2003, 343(1):1-4.
  • [6]El-Sherif Y, Tesoriero J, Hogan MV, Wieraszko A: Melatonin regulates neuronal plasticity in the hippocampus. J Neurosci Res 2003, 72(4):454-460.
  • [7]Rawashdeh O, Maronde E: The hormonal Zeitgeber melatonin: role as a circadian modulator in memory processing. Front Mol Neurosci 2012, 5:27.
  • [8]Morgan PJ, Barrett P, Howell HE, Helliwell R: Melatonin receptors: localization, molecular pharmacology and physiological significance. Neurochem Int 1994, 24(2):101-146.
  • [9]He P, Ouyang X, Zhou S, Yin W, Tang C, Laudon M, Tian S: A novel melatonin agonist Neu-P11 facilitates memory performance and improves cognitive impairment in a rat model of Alzheimer' disease. Horm Behav 2013, 64(1):1-7.
  • [10]Bertaina-Anglade V, Drieu-La-Rochelle C, Mocaer E, Seguin L: Memory facilitating effects of agomelatine in the novel object recognition memory paradigm in the rat. Pharmacol Biochem Behav 2011, 98(4):511-517.
  • [11]Argyriou A, Prast H, Philippu A: Melatonin facilitates short-term memory. Eur J Pharmacol 1998, 349(2–3):159-162.
  • [12]Gorfine T, Zisapel N: Melatonin and the human hippocampus, a time dependent interplay. J Pineal Res 2007, 43(1):80-86.
  • [13]Rimmele U, Spillmann M, Bartschi C, Wolf OT, Weber CS, Ehlert U, Wirtz PH: Melatonin improves memory acquisition under stress independent of stress hormone release. Psychopharmacol (Berl) 2009, 202(4):663-672.
  • [14]Larson J, Jessen RE, Uz T, Arslan AD, Kurtuncu M, Imbesi M, Manev H: Impaired hippocampal long-term potentiation in melatonin MT2 receptor-deficient mice. Neurosci Lett 2006, 393(1):23-26.
  • [15]Rawashdeh O, de Borsetti NH, Roman G, Cahill GM: Melatonin suppresses nighttime memory formation in zebrafish. Science 2007, 318(5853):1144-1146.
  • [16]Karakas A, Coskun H, Kaya A, Kucuk A, Gunduz B: The effects of the intraamygdalar melatonin injections on the anxiety like behavior and the spatial memory performance in male Wistar rats. Behav Brain Res 2011, 222(1):141-150.
  • [17]Yang Z, Li C, Huang F: Melatonin impaired acquisition but not expression of contextual fear in rats. Neurosci Lett 2013, 552:10-14.
  • [18]LeDoux JE: Emotion circuits in the brain. Annu Rev Neurosci 2000, 23:155-184.
  • [19]Maren S: Neurobiology of Pavlovian fear conditioning. Annu Rev Neurosci 2001, 24:897-931.
  • [20]Bouton ME: Context, time, and memory retrieval in the interference paradigms of Pavlovian learning. Psychol Bull 1993, 114(1):80-99.
  • [21]Bouton ME, Westbrook RF, Corcoran KA, Maren S: Contextual and temporal modulation of extinction: behavioral and biological mechanisms. Biol Psychiatry 2006, 60(4):352-360.
  • [22]Sotres-Bayon F, Bush DE, LeDoux JE: Acquisition of fear extinction requires activation of NR2B-containing NMDA receptors in the lateral amygdala. Neuropsychopharmacol 2007, 32(9):1929-1940.
  • [23]Sotres-Bayon F, Bush DE, LeDoux JE: Emotional perseveration: an update on prefrontal-amygdala interactions in fear extinction. Learn Mem 2004, 11(5):525-535.
  • [24]Maren S, Quirk GJ: Neuronal signalling of fear memory. Nat Rev Neurosci 2004, 5(11):844-852.
  • [25]Cho JH, Deisseroth K, Bolshakov VY: Synaptic encoding of fear extinction in mPFC-amygdala circuits. Neuron 2013, 80(6):1491-1507.
  • [26]Lattal KM, Radulovic J, Lukowiak K: Extinction: [corrected] does it or doesn't it? The requirement of altered gene activity and new protein synthesis. Biol Psychiatry 2006, 60(4):344-351.
  • [27]Lai CS, Franke TF, Gan WB: Opposite effects of fear conditioning and extinction on dendritic spine remodelling. Nature 2012, 483(7387):87-91.
  • [28]Marsicano G, Wotjak CT, Azad SC, Bisogno T, Rammes G, Cascio MG, Hermann H, Tang J, Hofmann C, Zieglgansberger W, Di Marzo V, Lutz B: The endogenous cannabinoid system controls extinction of aversive memories. Nature 2002, 418(6897):530-534.
  • [29]Kovacs GL, Gajari I, Telegdy G, Lissak K: Effect of melatonin and pinealectomy on avoidance and exploratory activity in the rat. Physiol Behav 1974, 13(3):349-355.
  • [30]Soto-Moyano R, Burgos H, Flores F, Valladares L, Sierralta W, Fernandez V, Perez H, Hernandez P, Hernandez A: Melatonin administration impairs visuo-spatial performance and inhibits neocortical long-term potentiation in rats. Pharmacol Biochem Behav 2006, 85(2):408-414.
  • [31]Gorfine T, Yeshurun Y, Zisapel N: Nap and melatonin-induced changes in hippocampal activation and their role in verbal memory consolidation. J Pineal Res 2007, 43(4):336-342.
  • [32]Phillips RG, LeDoux JE: Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci 1992, 106(2):274-285.
  • [33]Wallenstein GV, Vago DR: Intrahippocampal scopolamine impairs both acquisition and consolidation of contextual fear conditioning. Neurobiol Learn Mem 2001, 75(3):245-252.
  • [34]Kim JJ, Fanselow MS: Modality-specific retrograde amnesia of fear. Science 1992, 256(5057):675-677.
  • [35]Chaudhury D, Loh DH, Dragich JM, Hagopian A, Colwell CS: Select cognitive deficits in vasoactive intestinal peptide deficient mice. BMC Neurosci 2008, 9:63. BioMed Central Full Text
  • [36]Corcoran KA, Desmond TJ, Frey KA, Maren S: Hippocampal inactivation disrupts the acquisition and contextual encoding of fear extinction. J Neurosci 2005, 25(39):8978-8987.
  • [37]Heldt SA, Stanek L, Chhatwal JP, Ressler KJ: Hippocampus-specific deletion of BDNF in adult mice impairs spatial memory and extinction of aversive memories. Mol Psychiatry 2007, 12(7):656-670.
  • [38]Ekmekcioglu C: Melatonin receptors in humans: biological role and clinical relevance. Biomed Pharmacother 2006, 60(3):97-108.
  • [39]Savaskan E, Ayoub MA, Ravid R, Angeloni D, Fraschini F, Meier F, Eckert A, Muller-Spahn F, Jockers R: Reduced hippocampal MT2 melatonin receptor expression in Alzheimer's disease. J Pineal Res 2005, 38(1):10-16.
  • [40]Uz T, Arslan AD, Kurtuncu M, Imbesi M, Akhisaroglu M, Dwivedi Y, Pandey GN, Manev H: The regional and cellular expression profile of the melatonin receptor MT1 in the central dopaminergic system. Brain Res Mol Brain Res 2005, 136(1–2):45-53.
  • [41]Kong X, Li X, Cai Z, Yang N, Liu Y, Shu J, Pan L, Zuo P: Melatonin regulates the viability and differentiation of rat midbrain neural stem cells. Cell Mol Neurobiol 2008, 28(4):569-579.
  • [42]Rosenstein RE, Cardinali DP: Melatonin increases in vivo GABA accumulation in rat hypothalamus, cerebellum, cerebral cortex and pineal gland. Brain Res 1986, 398(2):403-406.
  • [43]Vimala PV, Bhutada PS, Patel FR: Therapeutic potential of agomelatine in epilepsy and epileptic complications. Med Hypotheses 2014, 82(1):105-110.
  • [44]Davis M, Myers KM: The role of glutamate and gamma-aminobutyric acid in fear extinction: clinical implications for exposure therapy. Biol Psychiatry 2002, 52(10):998-1007.
  • [45]Baydas G, Nedzvetsky VS, Nerush PA, Kirichenko SV, Demchenko HM, Reiter RJ: A novel role for melatonin: regulation of the expression of cell adhesion molecules in the rat hippocampus and cortex. Neurosci Lett 2002, 326(2):109-112.
  • [46]Baydas G, Ozveren F, Akdemir I, Tuzcu M, Yasar A: Learning and memory deficits in rats induced by chronic thinner exposure are reversed by melatonin. J Pineal Res 2005, 39(1):50-56.
  • [47]Wang LM, Suthana NA, Chaudhury D, Weaver DR, Colwell CS: Melatonin inhibits hippocampal long-term potentiation. Eur J Neurosci 2005, 22(9):2231-2237.
  • [48]Abel T, Lattal KM: Molecular mechanisms of memory acquisition, consolidation and retrieval. Curr Opin Neurobiol 2001, 11:180-187.
  • [49]Schafe GE, Nadel NV, Sullivan GM, Harris A, LeDoux JE: Memory consolidation for contextual and auditory fear conditioning is dependent on protein synthesis, PKA, and MAP kinase. Learn Mem 1999, 6(2):97-110.
  • [50]Isiegas C, Park A, Kandel ER, Abel T, Lattal KM: Transgenic inhibition of neuronal protein kinase A activity facilitates fear extinction. J Neurosci 2006, 26(49):12700-12707.
  • [51]Wang H, Ferguson GD, Pineda VV, Cundiff PE, Storm DR: Overexpression of type-1 adenylyl cyclase in mouse forebrain enhances recognition memory and LTP. Nat Neurosci 2004, 7(6):635-642.
  • [52]Monti B, Berteotti C, Contestabile A: Subchronic rolipram delivery activates hippocampal CREB and Arc, enhances retention and slows down extinction of conditioned fear. Neuropsychopharmacology 2006, 31:278-286.
  • [53]Boutin JA, Audinot V, Ferry G, Delagrange P: Molecular tools to study melatonin pathways and actions. Trends Pharmacol Sci 2005, 26(8):412-419.
  • [54]Rothbaum BO, Davis M: Applying learning principles to the treatment of post-trauma reactions. Ann N Y Acad Sci 2003, 1008:112-121.
  • [55]Bentz D, Michael T, de Quervain DJ, Wilhelm FH: Enhancing exposure therapy for anxiety disorders with glucocorticoids: from basic mechanisms of emotional learning to clinical applications. J Anxiety Disord 2010, 24(2):223-230.
  • [56]Milad MR, Rauch SL, Pitman RK, Quirk GJ: Fear extinction in rats: implications for human brain imaging and anxiety disorders. Biol Psychol 2006, 73(1):61-71.
  • [57]Bremner JD, Vermetten E, Schmahl C, Vaccarino V, Vythilingam M, Afzal N, Grillon C, Charney DS: Positron emission tomographic imaging of neural correlates of a fear acquisition and extinction paradigm in women with childhood sexual-abuse-related post-traumatic stress disorder. Psychol Med 2005, 35(6):791-806.
  • [58]McFarlane AC, Barton CA, Briggs N, Kennaway DJ: The relationship between urinary melatonin metabolite excretion and posttraumatic symptoms following traumatic injury. J Affect Disord 2010, 127(1–3):365-369.
  文献评价指标  
  下载次数:31次 浏览次数:5次