| BMC Systems Biology | |
| Modeling miRNA-mRNA interactions: fitting chemical kinetics equations to microarray data | |
| Yi Zhao2  Robert Azencott1  Zijun Luo2  | |
| [1] Department of Mathematics, University of Houston, 4800 Calhoun, Houston, TX, USA;School of Natural Sciences and Humanities, Harbin Institute of Technology, Shenzhen Graduate School, Shenzhen, Guangdong, China | |
| 关键词: Minimal net clustering; Chemical kinetics modeling; miRNA; | |
| Others : 1141342 DOI : 10.1186/1752-0509-8-19 |
|
| received in 2013-03-10, accepted in 2014-02-12, 发布年份 2014 | |
PDF
|
|
【 摘 要 】
Background
The miRNAs are small non-coding RNAs of roughly 22 nucleotides in length, which can bind with and inhibit protein coding mRNAs through complementary base pairing. By degrading mRNAs and repressing proteins, miRNAs regulate the cell signaling and cell functions. This paper focuses on innovative mathematical techniques to model gene interactions by algorithmic analysis of microarray data. Our goal was to elucidate which mRNAs were actually degraded or had their translation inhibited by miRNAs belonging to a very large pool of potential miRNAs.
Results
We proposed two chemical kinetics equations (CKEs) to model the interactions between miRNAs, mRNAs and the associated proteins. In order to reduce computational cost, we used a non linear profile clustering method named minimal net clustering and efficiently condensed the large set of expression profiles observed in our microarray data sets. We determined unknown parameters of the CKE models by minimizing the discrepancy between model prediction and data, using our own fast non linear optimization algorithm. We then retained only the CKE models for which the optimized fit to microarray data is of high quality and validated multiple miRNA-mRNA pairs.
Conclusion
The implementation of CKE modeling and minimal net clustering reduces drastically the potential set of miRNA-mRNA pairs, with a high gain for further experimental validations. The minimal net clustering also provides good miRNA candidates that have similar regulatory roles.
【 授权许可】
2014 Luo et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150327024351247.pdf | 590KB | ||
| Figure 7. | 49KB | Image | |
| Figure 6. | 54KB | Image | |
| Figure 5. | 65KB | Image | |
| Figure 4. | 53KB | Image | |
| Figure 3. | 47KB | Image | |
| Figure 2. | 49KB | Image | |
| Figure 1. | 17KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
【 参考文献 】
- [1]Ambros V: The functions of animal microRNAs. Nature 2004, 431(7006):350-355.
- [2]Aravin A, Tuschl T: Identification and characterization of small RNAs involved in RNA silencing. FEBS Lett 2005, 579(26):5830-5840.
- [3]Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell 2009, 136(2):215-233.
- [4]Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I: MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 2008, 455:1124-1128.
- [5]Wang XJ, Reyes JL, Chua NH, Gaasterland T: Prediction and identification of arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol 2004, 5(9):R65. BioMed Central Full Text
- [6]Kawasaki H, Taira K: MicroRNA-196 inhibits HOXB8 expression in myeloid differentiation of HL60 cells. Nucleic Acids Symp Ser 2004, 48(48):211-212.
- [7]Moxon S, Jing R, Szittya G, Schwach F, RPR L, Moulton V, Dalmay T: Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Res 2008, 18(10):1602-1609.
- [8]Williams AE: Functional aspects of animal microRNAs. Cell Mol Life Sci 2008, 65(4):545-562.
- [9]Mazière P, Enright AJ: Prediction of microRNA targets. Drug Discov Today 2007, 12(11–12):452-458.
- [10]Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge C: Prediction of mammalian microRNA targets. Cell 2003, 115:787-798.
- [11]Lewis BP, Burge CB, Bartel D: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005, 120:15-20.
- [12]Brennecke J, Stark A, Russell RB, Cohen S: Principles of microRNA-target recognition. PLoS Biol 2005, 3:e85.
- [13]Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein E, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N: Combinatorial microRNA target predictions. Nat Genet 2005, 37:495-500.
- [14]Chi SW, Hannon GJ, Darnell RB: An alternative mode of microRNA target recognition. Nat Struct Mol Biol 2012, 19(3):321-327.
- [15]Baek D, Villé J, Shin C, Camargo FD, Gygi SP, Bartel DP: The impact of microRNAs on protein output. Nature 2008, 455:64-71.
- [16]Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N: Widespread changes in protein synthesis induced by microRNAs. Nature 2008, 455:58-63.
- [17]Mourelatos Z: Small RNAs: The seeds of silence. Nature 2008, 455:44-45.
- [18]Gu P, Reid JG, Gao X, Shaw CA, Creighton C, Tran PL, Zhou X, Drabek RB, Steffen DL, Hoang DM, Weiss MK, Naghavi AO, El-daye J, Khan MF, Legge GB, Wheeler DA, Gibbs RA, Miller JN, Cooney AJ, Gunaratne PH: Novel miRNA candidates and miRNA-mRNA pairs in ES cells. PLoS ONE 2008, 3(7):e2548.
- [19]de Jong H: Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol 2002, 9(1):67-103.
- [20]Goutsias J, Kim S: A nonlinear discrete dynamical model for transcriptional regulation: construction and properties. Biophys J 2004, 86(4):1922-1945.
- [21]Cornish-Bowden A: Fundamentals of Enzyme Kinetics, 3rd Edition. London: Portland Press; 2004.
- [22]Goutsias J, Lee NH: Computational and experimental approaches for modeling gene regulatory networks. Curr Pharm Des 2007, 13:1415-1436.
- [23]Moore JW, Pearson RG: Kinetics and Mechanism, 3rd Edition. New York: Wiley; 1981.
- [24]Slonim DK, Yanai I: Getting started in gene expression microarray analysis. PLoS Comput. Biol 2009, 5(10):e1000543.
- [25]Engl HW, Flamm C, Kügler P, Lu J, Müller S, Schuster P: Inverse problems in systems biology. IOP Sci 2009, 25:123014.
- [26]Arkin A, Ross J, McAdams HH: Stochastic kinetic analysis of developmental pathway bifurcation in phage l-infected escherichia coli cells. Genetics 1998, 149:1633-1648.
- [27]Wang Y, Liu CL, Storey JD, Tibshirani RJ, Herschlag D, Brown PO: Precision and functional specificity in mRNA decay. Proc Natl Acad Sci 2002, 99(9):5860-5865.
- [28]Meir E, Munro EM, Odell GM, von Dassow G: Ingeneue: a versatile tool for reconstituting genetic networks, with examples from the segment polarity network. J Exp Zool 2002, 294:216-251.
- [29]Müller S, Hofbauer J, Endler L, Flamm C, Widder S, Schuster P: A generalized model of the repressilator. J Math Biol 2006, 53:905-937.
- [30]Widder S, Schicho J, Schuster P: Dynamic patterns of gene regulation I: simple two-gene systems. J Theor Biol 2007, 246:395-419.
- [31]Hornstein E, Shomron N: Canalization of development by microRNAs. Nat Genet 2006, 38:S20-S24.
- [32]Azencott R, Coldefy F, Younes L: A distance for elastic matching in object recognition. In Pattern Recognition, Proceedings of 13th Int. Conf. ICPR 96, vol. 1.. IEEE; 1996:687-691.
- [33]Periwal V, Chow CC, Bergman RN, Ricks M, Vega GL, Sumner AE: Evaluation of quantitative models of the effect of insulin on lipolysis and glucose disposal. Am J Physiol Regul Integr Comp Physiol 2008, 295:R1089-R1096.
- [34]Gregory PC: Bayesian Logical Data Analysis for the Physical Sciences: A Comparative Approach With Mathematical Support. London: Cambridge University Press; 2005.
- [35]Küegler P, Gaubitzer E, Müller S: Parameter identification for chemical reaction systems using sparsity enforcing regularization: a case study for the Chlorite-Iodide Reaction. J Phys Chem A 2009, 113:2775-2785.
- [36]Vapnik V: Statistical Learning Theory. New York: Wiley; 1998.
- [37]Boyd S, Vandenberghe L: Convex Optimization. Cambridge: Cambridge University Press; 2004.
- [38]Luo Z, Xu X, Gu P, Lonard D, Gunaratne P, Cooney AJ, Azencott R: Regulatory circuits of miRNAs in ES cell differentiation: a chemical kinetics modeling approach. PLoS One 2011, 6(10):e23263.
- [39]Vergoulis TI, Vlachos P, Alexiou G, Georgakilas M, Maragkakis M, Reczko M, Gerangelos S, Koziris N, Dalamagas T, Hatzigeorgiou A: Tarbase 6.0: capturing the exponential growth of miRNA targets with experimental support. Nucl Acids Res 2012, 40(D1):D222-D229.
- [40]Marson A, Levine SS, Cole MF, Frampton GM, Brambrink T, Johnstone S, Guenther MG, Johnston WK, Wernig M, Newman J, Calabrese JM, Dennis LM, Volkert TL, Gupta S, Love J, Hannett N, Sharp PA, Bartel DP, Jaenisch R, YR A: Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 2008, 10:1016.
- [41]Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, Gifford DK, Melton DA, Jaenisch R, Young RA: Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 2005, 122(6):947-956.
- [42]Trajkovski M, Hausser J, Soutschek J, Bhat B, Akin A, Zavolan M, Heim MH, Stoffel M: MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 2011, 474(7353):649-653.
- [43]Chen HY, Lin YM, Chung HC, Lang YD, Lin CJ, Huang J, Wang WC, Lin FM, Chen Z, Huang HD, Shyy JY, Liang JT, Chen RH: miR-103/107 promote metastasis of colorectal cancer by targeting the metastasis suppressors DAPK and KLF4. Cancer Res 2012, 72(14):3631-3641.
- [44]Esquela-Kerscher A, Trang P, Wiggins JF, Patrawala L, Cheng A, Ford L, Weidhaas JB, Brown D, Bader AG, Slack FJ: The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle 2008, 7(6):759-764.
PDF