期刊论文详细信息
BMC Systems Biology
Computational developments in microRNA-regulated protein-protein interactions
Yi-Ping Phoebe Chen1  Wei Zhu1 
[1] Department of Computer Science and Computer Engineering, La Trobe University, Melbourne, Australia
关键词: Protein-protein interaction;    Regulation;    miRNA;   
Others  :  1141454
DOI  :  10.1186/1752-0509-8-14
 received in 2013-01-03, accepted in 2014-01-20,  发布年份 2014
PDF
【 摘 要 】

Protein-protein interaction (PPI) is one of the most important functional components of a living cell. Recently, researchers have been interested in investigating the correlation between PPI and microRNA, which has been found to be a regulator at the post-transcriptional level. Studies on miRNA-regulated PPI networks will not only facilitate an understanding of the fine tuning role that miRNAs play in PPI networks, but will also provide potential candidates for tumor diagnosis. This review describes basic studies on the miRNA-regulated PPI network in the way of bioinformatics which includes constructing a miRNA-target protein network, describing the features of miRNA-regulated PPI networks and overviewing previous findings based on analysing miRNA-regulated PPI network features.

【 授权许可】

   
2014 Zhu and Chen; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150327051540688.pdf 618KB PDF download
Figure 3. 59KB Image download
Figure 2. 49KB Image download
Figure 1. 60KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A: Identification of mammalian microRNA host genes and transcription units. Genome research 2004, 14(10A):1902-1910.
  • [2]Weber MJ: New human and mouse microRNA genes found by homology search. FEBS Journal 2005, 272(1):59-73.
  • [3]Lee RC, Feinbaum RL, Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75(5):843-854.
  • [4]Lee Y, Jeon K, Lee JT, Kim S, Kim VN: MicroRNA maturation: stepwise processing and subcellular localization. The EMBO journal 2002, 21(17):4663-4670.
  • [5]Chen F, Chen YP: Exploring cross-species-related miRNAs based on sequence and secondary structure. IEEE transactions on bio-medical engineering 2010, 57(7):1547-1553.
  • [6]An J, Choi KP, Wells CA, Chen YP: Identifying co-regulating microRNA groups. Journal of bioinformatics and computational biology 2010, 8(1):99-115.
  • [7]Lin CC, Chen YJ, Chen CY, Oyang YJ, Juan HF, Huang HC: Crosstalk between transcription factors and microRNAs in human protein interaction network. BMC systems biology 2012, 6:18. BioMed Central Full Text
  • [8]Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, et al.: MicroRNA expression profiles classify human cancers. Nature 2005, 435(7043):834-838.
  • [9]Tsuchiya S, Okuno Y, Tsujimoto G: MicroRNA: biogenetic and functional mechanisms and involvements in cell differentiation and cancer. Journal of pharmacological sciences 2006, 101(4):267-270.
  • [10]Tzur G, Israel A, Levy A, Benjamin H, Meiri E, Shufaro Y, Meir K, Khvalevsky E, Spector Y, Rojansky N, et al.: Comprehensive gene and microRNA expression profiling reveals a role for microRNAs in human liver development. PloS one 2009, 4(10):e7511.
  • [11]Maziere P, Enright AJ: Prediction of microRNA targets. Drug discovery today 2007, 12(11–12):452-458.
  • [12]Nagel R, le Sage C, Diosdado B, van der Waal M, Oude Vrielink JA, Bolijn A, Meijer GA, Agami R: Regulation of the adenomatous polyposis coli gene by the miR-135 family in colorectal cancer. Cancer research 2008, 68(14):5795-5802.
  • [13]Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Muller P, et al.: Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 2000, 408(6808):86-89.
  • [14]Guo L, Lu ZH: The fate of miRNA* strand through evolutionary analysis: implication for degradation as merely carrier strand or potential regulatory molecule? PLoS One 2010, 5(6):e11387.
  • [15]Cai Y, Yu X, Hu S, Yu J: A brief review on the mechanisms of miRNA regulation. Genomics, proteomics & bioinformatics 2009, 7(4):147-154.
  • [16]Yu B, Qian T, Wang Y, Zhou S, Ding G, Ding F, Gu X: miR-182 inhibits Schwann cell proliferation and migration by targeting FGF9 and NTM, respectively at an early stage following sciatic nerve injury. Nucleic Acids Res 2012, 40(20):10356-10365.
  • [17]Cheng C, Bhardwaj N, Gerstein M: The relationship between the evolution of microRNA targets and the length of their UTRs. BMC Genomics 2009., 10(431)
  • [18]Ørom UA, Nielsen FC, Lund AH: MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Molecular Cell 2008, 30:460-471.
  • [19]Forman JJ, Coller HA: The code within the code MicroRNAs target coding regions. Cell Cycle 2010, 9(8):1533-1541.
  • [20]Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP: Prediction of plant microRNA targets. Cell 2002, 110(4):513-520.
  • [21]Brennecke J, Stark A, Russell RB, Cohen SM: Principles of microRNA-target recognition. PLoS biology 2005, 3(3):e85.
  • [22]Hartwell LH, Hopfield JJ, Leibler S, Murray AW: From molecular to modular cell biology. Nature 1999, 402(6761 Suppl):C47-52.
  • [23]Zhang SH, Jin GX, Zhang XS, Chen LN: Discovering functions and revealing mechanisms at molecular level from biological networks. Proteomics 2007, 7(16):2856-2869.
  • [24]Fields S, Song O: A novel genetic system to detect protein-protein interactions. Nature 1989, 340(6230):245-246.
  • [25]Schwikowski B, Uetz P, Fields S: A network of protein-protein interactions in yeast. Nature biotechnology 2000, 18(12):1257-1261.
  • [26]Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, et al.: A human protein-protein interaction network: a resource for annotating the proteome. Cell 2005, 122(6):957-968.
  • [27]Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y: A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proceedings of the National Academy of Sciences of the United States of America 2001, 98(8):4569-4574.
  • [28]Aebersold R, Mann M: Mass spectrometry-based proteomics. Nature 2003, 422(6928):198-207.
  • [29]Fields S: High-throughput two-hybrid analysis: the promise and the peril. Febs J 2005, 272(21):5391-5399.
  • [30]Zhu W, Hou J, Chen YP: Exploiting multi-layered information to iteratively predict protein functions. Mathematical biosciences 2012, 236(2):108-116.
  • [31]Rogler CE, Levoci L, Ader T, Massimi A, Tchaikovskaya T, Norel R, Rogler LE: MicroRNA-23b cluster microRNAs regulate transforming growth factor-β/bone morphogenetic protein signaling and liver stem cell differentiation by targeting Smads. Hepatology 2009, 50(2):570-584.
  • [32]Mei J, Bachoo R, Zhang CL: MicroRNA-146a inhibits glioma development by targeting Notch1. Mol Cell Biol 2011, 31(17):3584-3592.
  • [33]Papagiannakopoulos T, Friedmann-Morvinski D, Neveu P, Dugas JC, Gill RM, Huillard E, Liu C, Zong H, Rowitch DH, Barres BA, et al.: Pro-neural miR-128 is a glioma tumor suppressor that targets mitogenic kinases. Oncogene 2012, 31(15):1884-1895.
  • [34]Enright AJ, Van Dongen S, Ouzounis CA: An efficient algorithm for large-scale detection of protein families. Nucleic acids research 2002, 30(7):1575-1584.
  • [35]King AD, Przulj N, Jurisica I: Protein complex prediction via cost-based clustering. Bioinformatics 2004, 20(17):3013-3020.
  • [36]Cho YR, Hwang W, Ramanathan M, Zhang A: Semantic integration to identify overlapping functional modules in protein interaction networks. BMC bioinformatics 2007, 8:265. BioMed Central Full Text
  • [37]Liu G, Wong L, Chua HN: Complex discovery from weighted PPI networks. Bioinformatics 2009, 25(15):1891-1897.
  • [38]Inui M, Martello G, Piccolo S: MicroRNA control of signal transduction. Nat Rev Mol Cell Biol 2010, 11(4):252-263.
  • [39]Cui Q, Yu Z, Purisima EO, Wang E: Principles of microRNA regulation of a human cellular signaling network. Molecular systems biology 2006, 2:46.
  • [40]Carthew RW, Sontheimer EJ: Origins and mechanisms of miRNAs and siRNAs. Cell 2009, 136(4):642-655.
  • [41]Kim VN, Han J, Siomi MC: Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 2009, 10(2):126-139.
  • [42]Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N: Widespread changes in protein synthesis induced by microRNAs. Nature 2008, 455(7209):58-63.
  • [43]Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP: The impact of microRNAs on protein output. Nature 2008, 455(7209):64-71.
  • [44]Zhu W, Yang L, Du Z: MicroRNA regulation and tissue-specific protein interaction network. PloS one 2011, 6(9):e25394.
  • [45]Han JD, Bertin N, Hao T, Goldberg DS, Berriz GF, Zhang LV, Dupuy D, Walhout AJ, Cusick ME, Roth FP, et al.: Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 2004, 430(6995):88-93.
  • [46]Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M: BioGRID: a general repository for interaction datasets. Nucleic Acids Res 2006, 34(Database issue):D535-539.
  • [47]Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003, 13(11):2498-2504.
  • [48]Xenarios I, Salwinski L, Duan XJ, Higney P, Kim SM, Eisenberg D: DIP, the database of interacting proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res 2002, 30(1):303-305.
  • [49]Lu M, Zhang Q, Deng M, Miao J, Guo Y, Gao W, Cui Q: An analysis of human microRNA and disease associations. PLoS One 2008, 3(10):e3420.
  • [50]Heikkinen L, Kolehmainen M, Wong G: Prediction of microRNA targets in caenorhabditis elegans using a self-organizing map. Bioinformatics 27(9):1247-1254.
  • [51]Pagel P, Kovac S, Oesterheld M, Brauner B, Dunger-Kaltenbach I, Frishman G, Montrone C, Mark P, Stumpflen V, Mewes HW, et al.: The MIPS mammalian protein-protein interaction database. Bioinformatics 2005, 21(6):832-834.
  • [52]Wu J, Vallenius T, Ovaska K, Westermarck J, Makela TP, Hautaniemi S: Integrated network analysis platform for protein-protein interactions. Nat Methods 2009, 6(1):75-77.
  • [53]Patil A, Nakai K, Nakamura H: HitPredict: a database of quality assessed protein-protein interactions in nine species. Nucleic Acids Res 2011, 39(Database issue):D744-749.
  • [54]Razick S, Magklaras G, Donaldson IM: iRefIndex: a consolidated protein interaction database with provenance. BMC Bioinformatics 2008, 9:405. BioMed Central Full Text
  • [55]Kim WY, Kang S, Kim BC, Oh J, Cho S, Bhak J, Choi JS: SynechoNET: integrated protein-protein interaction database of a model cyanobacterium Synechocystis sp. PCC 6803. BMC Bioinformatics 2008, 9(1):S20. BioMed Central Full Text
  • [56]Zhang Z, Yu J, Li D, Liu F, Zhou X, Wang T, Ling Y, Su Z: PMRD: plant microRNA database. Nucleic Acids Res 2010, 38(Database issue):D806-813.
  • [57]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al.: Gene ontology: tool for the unification of biology: the gene ontology consortium. Nat Genet 2000, 25(1):25-29.
  • [58]Hsu SD, Lin FM, Wu WY, Liang C, Huang WC, Chan WL, Tsai WT, Chen GZ, Lee CJ, Chiu CM, et al.: miRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic acids research 2011, 39(Database issue):D163-169.
  • [59]Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, et al.: Combinatorial microRNA target predictions. Nat Genet 2005, 37(5):495-500.
  • [60]Kruger J, Rehmsmeier M: RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res 2006, 34(Web Server issue):W451-454.
  • [61]Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005, 120(1):15-20.
  • [62]Antonov AV, Dietmann S, Wong P, Lutter D, Mewes HW: GeneSet2miRNA: finding the signature of cooperative miRNA activities in the gene lists. Nucleic Acids Research 2009, 37:W323-W328.
  • [63]Nam S, Li M, Choi KM, Balch C, Kim S, Nephew KP: MicroRNA and mRNA integrated analysis (MMIA): a web tool for examining biological functions of microRNA expression. Nucleic Acids Research 2009, 37:W356-W362.
  • [64]Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS: MicroRNA targets in Drosophila. Genome Biol 2003, 5(1):R1. BioMed Central Full Text
  • [65]Yang Y, Wang YP, Li KB: MiRTif: a support vector machine-based microRNA target interaction filter. BMC Bioinformatics 2008, 9(12):S4.
  • [66]Kozomara A, Griffiths-Jones S: miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 2010, 39(Database issue):D152-157.
  • [67]Wang WC, Lin FM, Chang WC, Lin KY, Huang HD, Lin NS: miRExpress: analyzing high-throughput sequencing data for profiling microRNA expression. BMC Bioinformatics 2009, 10:328. BioMed Central Full Text
  • [68]Vergoulis T, Vlachos IS, Alexiou P, Georgakilas G, Maragkakis M, Reczko M, Gerangelos S, Koziris N, Dalamagas T, Hatzigeorgiou AG: TarBase 6.0: capturing the exponential growth of miRNA targets with experimental support. Nucleic Acids Res 2012, 40(Database issue):D222-229.
  • [69]Friedlander MR, Chen W, Adamidi C, Maaskola J, Einspanier R, Knespel S, Rajewsky N: Discovering microRNAs from deep sequencing data using miRDeep. Nature Biotechnology 2008, 26(4):407-415.
  • [70]Zhu E, Zhao F, Xu G, Hou H, Zhou L, Li X, Sun Z, Wu J: mirTools: microRNA profiling and discovery based on high-throughput sequencing. Nucleic Acids Res 2010, 38(Web Server issue):W392-397.
  • [71]Yang JH, Li JH, Shao P, Zhou H, Chen YQ, Qu LH: starBase: a database for exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data. Nucleic Acids Res 2011, 39(Database issue):D202-209.
  • [72]Liang H, Li WH: MicroRNA regulation of human protein protein interaction network. RNA 2007, 13(9):1402-1408.
  • [73]Hsu CW, Juan HF, Huang HC: Characterization of microRNA-regulated protein-protein interaction network. Proteomics 2008, 8(10):1975-1979.
  • [74]Yuan X, Liu C, Yang P, He S, Liao Q, Kang S, Zhao Y: Clustered microRNAs’ coordination in regulating protein-protein interaction network. BMC systems biology 2009, 3:65. BioMed Central Full Text
  • [75]Sass S, Dietmann S, Burk UC, Brabletz S, Lutter D, Kowarsch A, Mayer KF, Brabletz T, Ruepp A, Theis FJ, et al.: MicroRNAs coordinately regulate protein complexes. BMC systems biology 2011, 5:136. BioMed Central Full Text
  • [76]Tseng CW, Lin CC, Chen CN, Huang HC, Juan HF: Integrative network analysis reveals active microRNAs and their functions in gastric cancer. BMC systems biology 2011, 5:99. BioMed Central Full Text
  • [77]Schmeier S, Schaefer U, Essack M, Bajic VB: Network analysis of microRNAs and their regulation in human ovarian cancer. BMC systems biology 2011, 5:183. BioMed Central Full Text
  • [78]Tacutu R, Budovsky A, Wolfson M, Fraifeld VE: MicroRNA-regulated protein-protein interaction networks: how could they help in searching for pro-longevity targets? Rejuvenation research 2010, 13(2–3):373-377.
  • [79]Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, et al.: Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005, 437(7057):376-380.
  • [80]Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S, Nelson SF, Pellegrini M, Jacobsen SE: Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 2008, 452(7184):215-219.
  • [81]Cloonan N, Forrest AR, Kolle G, Gardiner BB, Faulkner GJ, Brown MK, Taylor DF, Steptoe AL, Wani S, Bethel G, et al.: Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat Methods 2008, 5(7):613-619.
  • [82]Flusberg BA, Webster DR, Lee JH, Travers KJ, Olivares EC, Clark TA, Korlach J, Turner SW: Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods 2010, 7(6):461-465.
  • [83]Herrera BM, Lockstone HE, Taylor JM, Wills QF, Kaisaki PJ, Barrett A, Camps C, Fernandez C, Ragoussis J, Gauguier D, et al.: MicroRNA-125a is over-expressed in insulin target tissues in a spontaneous rat model of Type 2 Diabetes. Bmc Medical Genomics 2009., 2
  • [84]Ambs S, Prueitt RL, Yi M, Hudson RS, Howe TM, Petrocca F, Wallace TA, Liu CG, Volinia S, Calin GA, et al.: Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. Cancer Res 2008, 68(15):6162-6170.
  • [85]Dai Y, Zhou X: Computational methods for the identification of microRNA targets. Open Access Bioinformatics 2010, 2:29-39.
  • [86]Zhang BH, Pan XP, Wang QL, Cobb GP, Anderson TA: Computational identification of microRNAs and their targets. Computational Biology and Chemistry 2006, 30(6):395-407.
  • [87]Min H, Yoon S: Got target?: computational methods for microRNA target prediction and their extension. Experimental and Molecular Medicine 2010, 42(4):233-244.
  • [88]Chaudhuri K, Chatterjee R: MicroRNA detection and target prediction: integration of computational and experimental approaches. DNA and Cell Biology 2007, 26(5):321-337.
  • [89]Dai X, Zhuang Z, Zhao PX: Computational analysis of miRNA targets in plants: current status and challenges. Brief Bioinform 2010, 12(2):115-121.
  • [90]Wang X: Computational prediction of microRNA targets. Methods Mol Biol 2010, 667:283-295.
  • [91]Hammell M: Computational methods to identify miRNA targets. Seminars in cell & developmental biology 2010, 21(7):738-744.
  • [92]Garzon R, Marcucci G, Croce CM: Targeting microRNAs in cancer: rationale, strategies and challenges. Nature reviews Drug discovery 2010, 9(10):775-789.
  • [93]Maragkakis M, Alexiou P, Papadopoulos GL, Reczko M, Dalamagas T, Giannopoulos G, Goumas G, Koukis E, Kourtis K, Simossis VA, et al.: Accurate microRNA target prediction correlates with protein repression levels. BMC Bioinformatics 2009, 10:295. BioMed Central Full Text
  • [94]Murphy E, Vanicek J, Robins H, Shenk T, Levine AJ: Suppression of immediate-early viral gene expression by herpesvirus-coded microRNAs: implications for latency. Proc Natl Acad Sci USA 2008, 105(14):5453-5458.
  • [95]Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E: The role of site accessibility in microRNA target recognition. Nat Genet 2007, 39(10):1278-1284.
  • [96]Marin RM, Vanicek J: Optimal use of conservation and accessibility filters in MicroRNA target prediction. PLoS One 2012., 7(2)
  • [97]Patil A, Nakamura H: Filtering high-throughput protein-protein interaction data using a combination of genomic features. BMC bioinformatics 2005, 6:100. BioMed Central Full Text
  • [98]Patil A, Nakamura H: Filtering high-throughput protein-protein interaction data using a combination of genomic features. BMC Bioinformatics 2005, 6:6. BioMed Central Full Text
  • [99]Maslov S, Sneppen K: Specificity and stability in topology of protein networks. Science 2002, 296(5569):910-913.
  • [100]Gursoy A, Keskin O, Nussinov R: Topological properties of protein interaction networks from a structural perspective. Biochemical Society transactions 2008, 36(Pt 6):1398-1403.
  • [101]Altuvia Y, Landgraf P, Lithwick G, Elefant N, Pfeffer S, Aravin A, Brownstein MJ, Tuschl T, Margalit H: Clustering and conservation patterns of human microRNAs. Nucleic Acids Res 2005, 33(8):2697-2706.
  • [102]Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM: Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005, 433(7027):769-773.
  • [103]Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116(2):281-297.
  • [104]Bossi A, Lehner B: Tissue specificity and the human protein interaction network. Molecular systems biology 2009, 5:260.
  • [105]Cui Q, Yu Z, Pan Y, Purisima EO, Wang E: MicroRNAs preferentially target the genes with high transcriptional regulation complexity. Biochemical and biophysical research communications 2007, 352(3):733-738.
  • [106]Tacutu R, Budovsky A, Fraifeld VE: The NetAge database: a compendium of networks for longevity, age-related diseases and associated processes. Biogerontology 2010, 11(4):513-522.
  • [107]Chen YPP, Chen F: Using bioinformatics techniques for gene identification in drug discovery and development. Current Drug Metabolism 2008, 9(6):567-573.
  • [108]Chen Q, Chen YPP: Mining frequent patterns for AMP-activated protein kinase regulation on skeletal muscle. BMC Bioinformatics 2006, 7:394. BioMed Central Full Text
  • [109]Song X, Wang M, Chen YPP, Wang H, Han P, Sun H: Prediction of pre-miRNA with multiple stem-loops using pruning algorithm. Computers in Biology and Medicine 2013, 43(5):409-416.
  文献评价指标  
  下载次数:21次 浏览次数:1次