期刊论文详细信息
BMC Evolutionary Biology
Parallel re-modeling of EF-1α function: divergent EF-1α genes co-occur with EFL genes in diverse distantly related eukaryotes
Yuji Inagaki1  Tetsuo Hashimoto1  Andrew J Roger5  Alastair GB Simpson6  Ryan Gawryluk5  Naoji Yubuki2  Aaron A Heiss6  Yoshihiko Sako3  Yuki Nishimura4  Matthew W Brown5  Ryoma Kamikawa7 
[1] Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan;Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada;Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Kyoto 606-8502, Japan;Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572, Japan;Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada;Department of Biology, Dalhousie University, Halifax NS, Canada;Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
关键词: Thecamonas;    Spizellomyces;    Pythium;    Goniomonas;    Functional Remodeling;    EFL;    EF-1α;    Differential Gene Loss;    Diatoms;   
Others  :  1087022
DOI  :  10.1186/1471-2148-13-131
 received in 2013-04-26, accepted in 2013-06-21,  发布年份 2013
PDF
【 摘 要 】

Background

Elongation factor-1α (EF-1α) and elongation factor-like (EFL) proteins are functionally homologous to one another, and are core components of the eukaryotic translation machinery. The patchy distribution of the two elongation factor types across global eukaryotic phylogeny is suggestive of a ‘differential loss’ hypothesis that assumes that EF-1α and EFL were present in the most recent common ancestor of eukaryotes followed by independent differential losses of one of the two factors in the descendant lineages. To date, however, just one diatom and one fungus have been found to have both EF-1α and EFL (dual-EF-containing species).

Results

In this study, we characterized 35 new EF-1α/EFL sequences from phylogenetically diverse eukaryotes. In so doing we identified 11 previously unreported dual-EF-containing species from diverse eukaryote groups including the Stramenopiles, Apusomonadida, Goniomonadida, and Fungi. Phylogenetic analyses suggested vertical inheritance of both genes in each of the dual-EF lineages. In the dual-EF-containing species we identified, the EF-1α genes appeared to be highly divergent in sequence and suppressed at the transcriptional level compared to the co-occurring EFL genes.

Conclusions

According to the known EF-1α/EFL distribution, the differential loss process should have occurred independently in diverse eukaryotic lineages, and more dual-EF-containing species remain unidentified. We predict that dual-EF-containing species retain the divergent EF-1α homologues only for a sub-set of the original functions. As the dual-EF-containing species are distantly related to each other, we propose that independent re-modelling of EF-1α function took place in multiple branches in the tree of eukaryotes.

【 授权许可】

   
2013 Kamikawa et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150116021842946.pdf 519KB PDF download
Figure 3. 42KB Image download
Figure 2. 169KB Image download
Figure 1. 189KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Negrutskii BS, El’skaya AV: Eukaryotic translation elongation factor 1α: structure, expression, functions, and possible role in aminoacyl-tRNA channeling. Prog Nucleic Acid Res Mol Biol 1998, 60:47-78.
  • [2]Dreher TW, Uhlenbeck OC, Browning KS: Quantitative assessment of EF-1α. GTP binding to aminoacyl-tRNAs, aminoacyl-viral RNA, and tRNA shows close correspondence to the RNA binding properties of EF-Tu. J Biol Chem 1999, 274:666-672.
  • [3]Iwabe N, Kuma K, Hasegawa M, Osawa S, Miyata T: Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc Natl Acad Sci USA 1989, 86:9355-9359.
  • [4]Keeling PJ, Inagaki Y: A class of eukaryotic GTPase with a punctate distribution suggesting multiple functional replacements of translation elongation factor 1α. Proc Natl Sci Acad USA 2004, 101:15380-15385.
  • [5]Ruiz-Trillo I, Lane CE, Archibald JM, Roger AJ: Insights into the evolutionary origin and genome architecture of the unicellular opisthokonts Capsaspora owczarzaki and Sphaeroforma arctica. J Eukaryot Microbiol 2006, 53:379-384.
  • [6]Noble GP, Roger MB, Keeling PJ: Complex distribution of EFL and EF-1alpha proteins in the green algal lineage. BMC Evol Biol 2007, 7:82. BioMed Central Full Text
  • [7]Kamikawa R, Inagaki Y, Sako Y: Direct phylogenetic evidence for lateral transfer of elongation factor-like gene. Proc Natl Acad Sci USA 2008, 105:6965-6969.
  • [8]Gile GH, Faktorová D, Castlejohn CA, Burger G, Lang BF, Farmer MA, Lukes J, Keeling PJ: Distribution and phylogeny of EFL and EF-1alpha in Euglenozoa suggest ancestral co-occurrence followed by differential loss. PLoS One 2009, 4:e5162.
  • [9]Kamikawa R, Yabuki A, Nakayama T, Ishida K, Hashimoto T, Inagaki Y: Cercozoa comprises both EF-1α-containing and EFL-containing members. Eur J Protistol 2011, 47:24-28.
  • [10]Ishitani Y, Kamikawa R, Yabuki A, Tsuchiya M, Inagaki Y, Takishita K: Evolution of elongation factor-like (EFL) protein in Rhizaria is revised by radiolarian EFL gene sequences. J Eukaryot Microbiol 2012, 59:367-373.
  • [11]Szabová J, Růžička P, Verner Z, Hampl V, Lukeš J: Experimental examination of EFL and MATX eukaryotic horizontal gene transfers: Coexistence of mutually exclusive transcripts predates functional rescue. Mol Evol Biol 2011, 28:2371-2378.
  • [12]James TY, Kauff F, Schoch CL, et al.: Reconstructing the early evolution using a six-gene phylogeny. Science 2006, 443:818-822. (67 co-authors)
  • [13]Bowler C, Allen AE, Badger JH, et al.: The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 2008, 456:239-244. (74 co-authors)
  • [14]Daugbjerg N, Guillou L: Phylogenetic analyses of Bolidophyceae (Heterokontophyta) using rbcL gene sequences support their sister group relationship to diatoms. Phycologia 2001, 40:153-161.
  • [15]Haas BJ, Kamoun S, Zody MC, et al.: Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 2009, 461:393-398. (93 co-authors)
  • [16]Kamikawa R, Sakaguchi M, Matsumoto T, Hashimoto T, Inagaki Y: Rooting for the root of elongation factor-like protein phylogeny. Mol Phylogenet Evol 2010, 56:1082-1088.
  • [17]Hackett JD, Yoon HS, Li S, Reyes-Prieto A, Rümmele SE, Bhattacharya D: Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of Rhizaria with chromalveolates. Mol Biol Evol 2007, 24:1702-1713.
  • [18]Sakaguchi M, Takishita K, Tsuchiya M, Hashimoto T, Inagaki Y: Tracing back EFL gene evolution in the cryptomonads–haptophytes assemblage: Separate origins of EFL genes in haptophytes, photosynthetic cryptomonads, and goniomonads. Gene 2009, 441:126-131.
  • [19]Derelle R, Lang BF: Rooting the eukaryotic tree with mitochondrial and bacterial proteins. Mol Biol Evol 2012, 29:1277-1289.
  • [20]Shimodaira H: An approximately unbiased test of phylogenetic tree selection. Syst Biol 2002, 51:492-508.
  • [21]Gonen H, Smith CE, Siegel NR, Kahana C, Merrick WC, Chakraburtty K, Schwartz AL, Ciechanover A: Protein synthesis elongation factor EF-1alpha is essential for ubiquitin-dependent degradation of certain N alpha-acetylated proteins and may be substituted for by the bacterial elongation factor EF-Tu. Proc Natl Acad Sci USA 1994, 91:7648-7652.
  • [22]Liu G, Edmonds BT, Condeelis J: pH, EF-1α and the cytoskeleton. Trends Cell Biol 1996, 6:168-171.
  • [23]Grabherr MB, Haas BJ, Yassour M, et al.: (18 co-authors): Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnol 2011, 29:644-652.
  • [24]Stamatakis A: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22:2688-2690.
  • [25]Le SQ, Gascuel O: An improved general amino acid replacement matrix. Mol Biol Evol 2008, 25:1307-1325.
  • [26]Lartillot N, Lepage T, Blanquart S: PHYLOBAYES 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 2009, 25:2286-2288.
  文献评价指标  
  下载次数:36次 浏览次数:11次