BMC Evolutionary Biology | |
Modularity of a leaf moth-wing pattern and a versatile characteristic of the wing-pattern ground plan | |
Takao K Suzuki1  | |
[1] Laboratory for Evolutionary Morphology, Center for Developmental Biology, RIKEN, 2-2-3 Minatojima-minami, 650-0047 Chuo-ku Kobe, Japan | |
关键词: Correlation network; Geometric morphometrics; Nymphalid ground plan; Leaf mimicry; Masquerade; Moth and butterfly wing patterns; Evolvability; Modularity; Morphological integration; | |
Others : 1086762 DOI : 10.1186/1471-2148-13-158 |
|
received in 2013-04-24, accepted in 2013-07-18, 发布年份 2013 | |
【 摘 要 】
Background
One of the most intriguing questions in evolutionary developmental biology is how an insect acquires a mimicry pattern within its body parts. A striking example of pattern mimicry is found in the pattern diversity of moth and butterfly wings, which is thought to evolve from preexisting elements illustrated by the nymphalid ground plan (NGP). Previous studies demonstrated that individuality of the NGP facilitates the decoupling of associated common elements, leading to divergence. In contrast, recent studies on the concept of modularity have argued the importance of a combination of coupling and decoupling of the constituent elements. Here, we examine the modularity of a mimicry wing pattern in a moth and explore an evolvable characteristic of the NGP.
Results
This study examined the wings of the noctuid moth Oraesia excavata, which closely resemble leaves with a leaf venation pattern. Based on a comparative morphological procedure, we found that this leaf pattern was formed by the NGP common elements. Using geometric morphometrics combined with network analysis, we found that each of the modules in the leaf pattern integrates the constituent components of the leaf venation pattern (i.e., the main and lateral veins). Moreover, the detected modules were established by coupling different common elements and decoupling even a single element into different modules. The modules of the O. excavata wing pattern were associated with leaf mimicry, not with the individuality of the NGP common elements. For comparison, we also investigated the modularity of a nonmimetic pattern in the noctuid moth Thyas juno. Quantitative analysis demonstrated that the modules of the T. juno wing pattern regularly corresponded to the individuality of the NGP common elements, unlike those in the O. excavata wing pattern.
Conclusions
This study provides the first evidence for modularity in a leaf mimicry pattern. The results suggest that the evolution of this pattern involves coupling and decoupling processes to originate these modules, free from the individuality of the NGP system. We propose that this evolution has been facilitated by a versatile characteristic of the NGP, allowing the association of freely modifiable subordinate common elements to make modules.
【 授权许可】
2013 Suzuki; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150116015117301.pdf | 1299KB | download | |
Figure 6. | 126KB | Image | download |
Figure 5. | 115KB | Image | download |
Figure 4. | 116KB | Image | download |
Figure 3. | 162KB | Image | download |
Figure 2. | 110KB | Image | download |
Figure 1. | 126KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Cheverud JM: Phenotypic, genetic, and environmental morphological integration in the cranium. Evolution 1982, 36:499-516.
- [2]Dullemeijer P: Concepts and Approaches in Animal Morphology. The Netherlands: Van Gorcum; 1974.
- [3]Olson EC, Miller RL: Morphological Integration. Chicago: University of Chicago Press; 1958.
- [4]Lauder GV: Form and function: structural analysis in evolutionary morphology. Paleobiology 1981, 7:430-442.
- [5]Liem KF: Evolutionary strategies and morphological innovations: cichlid pharyngeal jaw. Syst Zool 1973, 22:425-441.
- [6]Wagner GP (Ed): The Character Concept in Evolutionary Biology. San Diego: Academic Press; 2001.
- [7]Wainwright PC: Functional versus morphological diversity in macroevolution. Ann Rev Ecol Evol Syst 2007, 38:381-401.
- [8]Bock GR, Cardew G (Eds): Homology: novartis foundation symposium 222. Chichester: John Wiley & Sons; 1999.
- [9]Hall BK (Ed): Homology: the hierarchical basis of comparative biology. San Diego: Academic Press; 1994.
- [10]Rieppel CO: Fundamentals of comparative biology. Basel: Birkhäuser Verlag; 1988.
- [11]Roth VL: Ontogeny and systematics. In The biological basis of homology. Edited by Humphries CJ. New York: Columbia University Press; 1988:1-26.
- [12]Wagner GP: The biological homology concept. Ann Rev Ecol Syst 1989, 20:51-69.
- [13]Liem K, Bemis W, Walker WF, Grande L: Functional Anatomy of the Vertebrates: an evolutionary perspective. 3rd edition. Belmonte: Brooks Cole; 2000.
- [14]Kardong KV: Vertebrates: comparative anatomy, function, evolution. 5th edition. New York: McGraw-Hill; 2008.
- [15]Schwanwitsch BN: On the ground-plan of wing-pattern in Nymphalids and certain other families of the Rhopalocerous Lepidoptera. Proc Zool Soc Lond B 1924, 34:509-528.
- [16]Süffert F: Zur vergleichenden analyse der schmetterlingszeichnumg. Biol Zentralblatt 1927, 47:385-413.
- [17]Nijhout HF: The Development and Evolution of Butterfly Wing Patterns. Washington: Smithsonian Institution Press; 1991.
- [18]Weatherbee SD, Nijhout HF, Grunert LW, Halder G, Galant R, Selegue J, Carroll S: Ultrabithorax function in butterfly wings and the evolution of insect wing patterns. Curr Biol 1999, 9:109-115.
- [19]Martin A, Reed RD: Wingless and aristaless2 define a developmental ground plan for moth and butterfly wing pattern evolution. Mol Biol Evol 2010, 27:2864-2878.
- [20]Brakefield PM: The biology of butterflies. In The ecological genetics of quantitative characters of Maniola jurtina and other butterflies. Edited by Vane-Wright RI, Ackery PR. London: Academic Press; 1984:167-190.
- [21]Paulsen SM, Nijhout HF: Phenotypic correlation structure among elements of the color pattern in Precis coenia (Lepidoptera: Nymphalidae). Evolution 1993, 47:593-618.
- [22]Paulsen SM: Quantitative genetics of butterfly wing color patterns. Dev Genet 1994, 15:79-91.
- [23]Paulsen SM: Quantitative genetics of the wing color pattern in the buckeye butterfly (Precis coenia and Precis evarete): evidence against the constancy of g. Evolution 1996, 50:1585-1597.
- [24]Beldade P, Brakefield PM: The genetics and evo-devo of butterfly wing patterns. Nat Rev Genet 2002, 3:442-452.
- [25]Nijhout HF: Symmetry systems and compartments in lepidopteran wings: the evolution of a patterning mechanism. Development 1994, Suppl:225-233.
- [26]Nijhout HF: Elements of butterfly wing patterns. J Exp Zool 2001, 291:213-295.
- [27]Cheverud JM: Developmental integration and the evolution of pleiotropy. Am Zool 1996, 36:44-50.
- [28]Wagner GP, Altenberg L: Complex adaptations and the evolution of evolvability. Evolution 1996, 50:967-976.
- [29]Kishida Y (Ed): The Standard of Moths in Japan I-II. Tokyo: Gakken; 2011.
- [30]Wagner GP, Pavlicev M, Cheverud JM: The road to modularity. Nat Rev Genet 2007, 8:921-931.
- [31]Klingenberg CP: Morphological integration and developmental modularity. Ann Rev Ecol Evol Syst 2008, 39:115-132.
- [32]Klingenberg CP: Evolution and development of shape: integrating quantitative approaches. Nat Rev Genet 2010, 11:623-635.
- [33]Klingenberg CP: Developmental instability: causes and consequences. In A developmental perspective on developmental instability: theory, models and mechanisms. Edited by Polak M. New York: The Oxford University Press; 2003:14-34.
- [34]Lande R: Quantitative genetic analysis of multivariate evolution, applied to brain: body size allometry. Evolution 1979, 33:402-416.
- [35]Arnold SJ: Morphology, performance, and fitness. Am Zool 1983, 23:347-361.
- [36]Newman MEJ: Networks: an introduction. Oxford: Oxford University Press; 2010.
- [37]Fortunato S: Community detection in graphs. Phys Rep 2010, 486:75-174.
- [38]Steuer R, Kurths J, Fiehn O, Weckwerth W: Observing and interpreting correlations in metabolic networks. Bioinformatics 2003, 19:1019-1026.
- [39]Steinhauser D, Krall L, Müssig C, Büssis D, Usadel B: Analysis of biological networks. In Correlation networks. Edited by Junker BH, Schreiber F, Hoboken NJ. Hoboken: John Wiley & Sons, Inc; 2007:305-333.
- [40]Steuer R: On the analysis and interpretation of correlations in metabolomic data. Brief Bioinform 2006, 7:151-158.
- [41]Eguíluz VM, Chialvo DR, Cecchi GA, Baliki M, Apkarian V: Scale-free brain functional networks. Phys Rev Lett 2005, 94:08102.
- [42]Butte AJ, Tamayo P, Slonin D, Golub TR, Kohane IS: Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proc Natl Acad Sci USA 2000, 97:12182-12186.
- [43]Carter SL, Brechbühler CM, Griffin M, Bond AT: Gene co-expression network topology provides a framework for molecular characterization of cellular state. Bioinformatics 2004, 20:2242-2250.
- [44]Schwanwitsch BN: Color-pattern in Lepidoptera. Entomologeskoe Obozrenie 1956, 35:530-546.
- [45]Henke K, Kruse G: Über Feldgliederungsmuster bei Geometriden und Noctuiden und den Musterbauplan der Schmetterlinge im allgemeinen. Nachrichten der Akademie der Wissenschaften in Göttingen, Mathematisch-physikalische Klasse 1941, 138-197.
- [46]Reichardt J, Bornholdt S: Statistical mechanics of community detection. Phys Rev E 2006, 74:016110.
- [47]Mitteroecker P, Bookstein F: The conceptual and statistical relationship between modularity and morphological integration. Syst Biol 2007, 56:818-836.
- [48]Mitteroecker P: The developmental basis of variational modularity: insights from quantitative genetics, morphometrics, and developmental biology. Evol Biol 2009, 36:377-385.
- [49]Whiteley MA, Pearson K: Data for the problem of evolution in man. I: a first study of the variability and correlation of the hand. Proc Roy Soc 1899, 65:126-151.
- [50]Lewenz MA, Whiteley MA: Data for the problem of evolution in man: a second study of variability and correlation of the hand. Biometrika 1902, 1:345-360.
- [51]Toussaint N, French V: The formation of pattern on the wing of the moth, Ephestia kuhniella. Development 1988, 103:707-718.
- [52]Martin A, Papa R, Nadeau NJ, Hill RI, Counterman BA, Halder G, Jiggins CD, Kronforst MR, Long AD, McMillan WO, Reed RD: Diversification of complex butterfly wing patterns by repeated regulatory evolution of a Wnt ligand. Proc Natl Acad Sci USA 2012, 109:12632-12637.
- [53]Magwene PM: New tools for studying integration and modularity. Evolution 2001, 55:1734-1745.
- [54]Márquez EJ: A statistical framework for testing modularity in multidimensional data. Evolution 2008, 62:2688-2708.
- [55]Klingenberg CP: Morphometric integration and modularity in configurations of landmarks: tools for evaluating a priori hypothesis. Evo Dev 2009, 11:405-421.
- [56]Parsons KJ, Márquez EJ, Albertson C: Constraint and opportunity: the genetic basis and evolution of modularity in the Cichlid mandible. Am Nat 2012, 179:64-78.
- [57]Grieco TM, Rizk OT, Hlusko LJ: A modular framework characterizes micro- and macroevolution of old monkey dentitions. Evolution 2013, 67:241-259.
- [58]Mitteroecker P, Bookstein F: The evolutionary role of modularity and integration in the hominoid cranium. Evolution 2008, 62:943-958.
- [59]Sanger TJ, Mahler DL, Abzhanov A, Losos JB: Roles for modularity and constraint in the evolution of cranial diversity among Anolis lizards. Evolution 2012, 66:1525-1542.
- [60]Lawrence PA, Struhl G: Morphogens, compartments, and pattern: lessons from drosophila? Cell 1996, 85:951-961.
- [61]Vermeij GJ: Adaptation, versatility and evolution. Syst Zool 1973, 22:466-477.
- [62]Vermeij GJ: Biological versatility and earth history. Proc Natl Acad Sci USA 1973, 70:1936-1938.
- [63]Carroll SB, Gates J, Keys DN, Paddock SW, Panganiban GE, Selegue JE, Williams JA: Pattern formation and eyespot determination in butterfly wings. Science 1994, 265:109-114.
- [64]Tamura T, Thibert C, Royer C, Kanda T, Abraham E, Kamba M, Komoto N, Thomas JL, Mauchamp B, Chavancy G, Shirk P, Fraser M, Prudhomme JC, Couble P: Germline transformation of the silkworm Bombyx mori L: using a piggyBac transposon-derived vector. Nat Biotech 2000, 18:81-84.
- [65]Imamura M, Nakai J, Inoue S, Quan GX, Kanda T, Tamura T: Targeted gene expression using the GAL4/UAS system in the silkworm Bombyx mori. Genetics 2003, 165:1329-1340.
- [66]Uchino K, Sezutsu H, Imamura M, Kobayashi I, Tatematsu K, Iizuka T, Yonemura N, Mita K, Tamura T: Construction of a piggyBac-based enhancer trap system for the analysis of gene function in silkworm Bombyx mori. Insect Biochem Mol Biol 2008, 38:1165-1173.
- [67]Terenius O, Papanicolaou A, Garbutt JS, Eleftherianos I, Huvenne H, Kanginakudru S, Albrechtsen M, An C, Aymeric JL, Barthel A, Bebas P, Bitra K, Bravo A, Chevalier F, Collinge DP, Crava CM, De Maagd RA, Duvic B, Erlandson M, Faye I, Felföldi G, Fujiwara H, Futahashi R, Gandhe AS, Gatehouse HS, Gatehouse LN, Giebultowicz JM, Gómez I, Grimmelikhuijzen CJ, Groot AT, et al.: RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. J Insect Physiol 2011, 57:231-245.
- [68]Kobayashi I, Tsukioka H, Kômoto N, Uchino K, Sezutsu H, Tamura T, Kusakabe T, Tomita S: SID-1 protein of Caenorhabditis elegans mediates uptake of dsRNA into Bombyx cells. Insect Biochem Mol Biol 2012, 42:148-154.
- [69]Ma S, Zhang S, Wang F, Liu Y, Liu Y, Xu H, Liu C, Lin Y, Zhao P, Xia Q: Highly efficient and specific genome editing in silkworm using custom TALENs. PLoS One 2012, 7:45035.
- [70]Daimon T, Kozaki T, Niwa R, Kobayashi I, Furuta K, Namiki T, Uchino K, Banno Y, Katsuma S, Tamura T, Mita K, Sezutsu H, Nakayama M, Itoyama K, Shimada T, Shinoda T: Precocious metamorphosis in the juvenile hormone-deficient mutant of the silkmoth, Bombyx mori. PLoS Genet 2012, 8:1002486.
- [71]Wagner GP, Mezey JG: Modularity in development and evolution. In The role of genetic architecture constraints in the origin of variational modularity. Edited by Schlosser G, Wagner GP. Chicago: The University Chicago Press; 2004:338-358.
- [72]Ruxton GD, Sherratt TN, Speed MP: Avoiding Attack: the evolutionary ecology of Crypsis, warning signals and Mimicry. Oxford: Oxford University Press; 2004.
- [73]Endler JA: An overview of the relationships between mimicry and crypsis. Biol J Linn Soc 1981, 16:25-31.
- [74]Allen JA, Cooper JM: Crypsis and masquerade. J Biol Educ 1985, 19:268-270.
- [75]Skelhorn J, Rowland HM, Speed MP, Ruxton GD: Masquerade: camouflage without crypsis. Science 2010, 327:51.
- [76]Skelhorn J, Ruxton GD: Predators are less likely to misclassify masquerading prey when their models are present. Biol Lett 2010, 6:597-599.
- [77]Kingsolver JG, Wiernasz DC: Dissecting correlated characters: adaptive aspects of phenotypic covariation in melanization pattern of Pieris butterflies. Evolution 1987, 41:491-503.
- [78]Klingenberg CP: Variation: a central concept in biology. In Developmental constraints, modules and evolvability. Edited by Hallgrimsson B, Hall BK. San Diego: Elsevier Academic Press; 2005:219-248.
- [79]Breuker CJ, Debat V, Klingenberg CP: Functional Evo-Devo. Trends Ecol Evol 2006, 21:488-492.
- [80]Klingenberg CP, Devat V, Roff DA: Quantitative genetics of shape in cricket wings: developmental integration in a functional structure. Evolution 2010, 64:2935-2951.
- [81]Bond AB, Kamil AC: Visual predators select for crypticity and polymorphism in virtual prey. Nature 2002, 415:609-613.
- [82]Dryden IL, Mardia KV: Statistical Shape Analysis. Hoboken: John Wiley & Sons; 1998.
- [83]Klingenberg CP, McIntyre GS: Geometric morphometrics of developmental instability: analyzing patterns of fluctuating asymmetry with Procrustes methods. Evolution 1998, 52:1363-1375.
- [84]Goswami A: Morphological integration in the carnivoran skull. Evolution 2006, 60:169-183.
- [85]Goswami A: Cranial modularity shifts during mammalian evolution. Evolution 2006, 168:270-280.
- [86]Escoufier Y: Le traitement des variables vectorielles. Biometrics 1973, 29:751-760.
- [87]Robert P, Escoufier Y: A unifying tool for linear multivariate statistical methods: the RV-coefficient. Appl Stat 1976, 25:257-265.
- [88]Klingenberg CP: Systems biology & statistical bioinformatics. In Analysis of modularity in configurations of landmarks. Edited by Barber S, Baxter PD, Mardia KV. Leeds: Leeds University Press; 2007:47-50.
- [89]Robert P, Ctéroux R, Ranger N: Some results on vector correlation. Comput Stat Data Anal 1985, 3:25-32.
- [90]Ctéroux R, Ducharme GR: Vector correlation for elliptical distributions. Comm Stat Theor Meth 1989, 18:1441-1454.
- [91]Laffont R, Renvoisé E, Navarro N, Alibert P, Montuire S: Morphological modularity and assessment of developmental processes within the vole dental row (Microtus arvalis, Arvicolinae, Rodentia). Evo Dev 2009, 11:302-311.
- [92]Drake AG, Klingenberg CP: Large-scale diversification of skull shape in domestic dogs: disparity and modularity. Am Nat 2010, 175:289-301.
- [93]Larzelere RE, Mulaik SA: Single-sample tests for many correlations. Psychol Bull 1977, 84:557-569.
- [94]Collis BA, Rosenblood LK: The problem of inflated significance when testing individual correlations from a correlation matrix. J Res Math Educ 1985, 16:52-55.
- [95]Mezard M, Parisi G, Virasoro M: Spin glass theory and beyond. Singapre: World Scientific; 1987.
- [96]Kirkpatrik S, Gelatt CD Jr, Vecchi MP: Optimization by simulated annealing. Science 1983, 220:671-680.