期刊论文详细信息
BMC Evolutionary Biology
Gradual and contingent evolutionary emergence of leaf mimicry in butterfly wing patterns
Hideki Sezutsu1  Shuichiro Tomita1  Takao K Suzuki1 
[1] Transgenic Silkworm Research Unit, Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, 1-2 Oowashi, Tsukuba, 305-8634, Ibaraki, Japan
关键词: Nymphalid ground plan;    Phylogenetic comparative methods;    Butterfly wing pattern;    Masquerade;   
Others  :  1117839
DOI  :  10.1186/s12862-014-0229-5
 received in 2014-07-18, accepted in 2014-10-27,  发布年份 2014
PDF
【 摘 要 】

Leaf mimicry patterns evolved in a gradual, rather than a sudden, manner from a non-mimetic ancestor. Through a lineage of Kallima butterflies, the leaf patterns evolutionarily originated through temporal accumulation of orchestrated changes in multiple pattern elements.

【 授权许可】

   
2014 Suzuki et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150206010640339.pdf 1503KB PDF download
Figure 5. 38KB Image download
Figure 4. 102KB Image download
Figure 3. 132KB Image download
Figure 2. 278KB Image download
Figure 1. 138KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Atchley WR, Hall BK: A model for development and evolution of complex morphological structures. Biol Rev 1991, 66:101-157.
  • [2]Wagner GP, Altenberg L: Complex adaptations and the evolution of evolvability. Evolution 1996, 50:967-976.
  • [3]Cheverud JM: Phenotypic, genetic, and environmental morphological integration in the cranium. Evolution 1982, 36:499-516.
  • [4]Lande R: Quantitative genetic analysis of multivariate evolution, applied to brain: body size allometry. Evolution 1979, 33:402-416.
  • [5]Charlesworth B, Lande R, Slatkin M: A Neo-Darwinian commentary on macroevolution. Evolution 1982, 36:474-498.
  • [6]Gould SJ: The Structure of Evolutionary Theory. Harvard University Press, Cambridge; 2002.
  • [7]Miyazawa S, Okamoto M, Kondo S: Blending of animal colour patterns by hybridization. Nat Comm 2010, 1:66.
  • [8]Jaeger J, Irons D, Monk N: The inheritance of process: a dynamical systems approach. J Exp Zool B 2012, 318:591-612.
  • [9]Pagel M: Inferring the historical patterns of biological evolution. Nature 1999, 401:877-884.
  • [10]Poulton EB: The Colours of Animals: Their Meaning and use, Especially Considered in the Case of Insects. Kegan Paul, Trench, Trübner and Co., Ltd, London; 1890.
  • [11]Cott HB: Adaptive Coloration in Animals. Methuen and Co, London; 1940.
  • [12]Edmunds M: Defence in Animals. Longman, London; 1974.
  • [13]Ruxton GD, Sherratt TN, Speed MP: Avoiding Attack: The Evolutionary Ecology of Crypsis, Warning Signals and Mimicry. Oxford University Press, Oxford; 2004.
  • [14]Wallace AR: Darwinism: An Exploitation of the Theory of Natural Selection With Some of its Applications. MacMillan & Co, London; 1889.
  • [15]Darwin C: The Descent of man. John Murray, London; 1871.
  • [16]Weissman A: The Evolution Theory. Edward Arnold, London; 1902.
  • [17]Watson DMS, Timofeeff-Ressovsky NW, Salisbury EJ, Turrill WB, Jenkin TJ, Ruggles Gates R, Fisher RA, Diver C, Hale Carpenter GD, Haldane JBS, MacBrid EW, Salaman RN: A discussion on the present state of the theory of natural selection. Proc R Soc B 1936, 121:43-73.
  • [18]Mivart St GJ: On the Genesis of Species. Macmillan, London; 1871.
  • [19]Goldschmidt RB: Mimetic polymorphism, a controversial chapter of Darwin. Q Rev Biol 1945, 20:205-230.
  • [20]Wagner GP: Homology, Genes, and Evolutionary Innovation. Princeton University Press, Princeton; 2014.
  • [21]Schwanwitsch BN: On the ground-plan of wing-pattern in Nymphalids and certain other families of the Rhopalocerous Lepidoptera. Proc Zool Soc Lond B 1924, 34:509-528.
  • [22]Süffert F: Zur vergleichenden analyse der schmetterlingszeichnumg. Biol Zentralblatt 1927, 47:385-413.
  • [23]Nijhout HF: The Development and Evolution of Butterfly Wing Patterns. Smithsonian Institution Press, Washington; 1991.
  • [24]Suzuki TK: Modularity of a leaf moth-wing pattern and a versatile characteristic of the wing-pattern ground plan. BMC Evol Biol 2013, 13:158. BioMed Central Full Text
  • [25]Martin A, Reed RD: Wingless and aristaless2 define a developmental ground plan for moth and butterfly wing pattern evolution. Mol Biol Evol 2010, 27:2864-2878.
  • [26][http://www.evolution.rdg.ac.uk/BayesTraits.html] webcite Pagel M, Meade A: BayesTraits 2.0. []
  • [27]Pagel M, Meade A, Barker D: Bayesian estimation of ancestral character states on phylogenies. Syst Biol 2004, 53:673-684.
  • [28]Pagel M, Meade A: Bayesian analysis of correlated evolution of discrete characters by reversible-jump Markov chain Monte Carlo. Am Nat 2006, 167:808-825.
  • [29]Gould SJ: The paradox of the first tier: an agenda for paleobiology. Paleobiology 1985, 11:2-12.
  • [30]Travisano M, Mongold JA, Bennett AF, Lenski RE: Experimental tests of the roles of adaptation, chance, and history in evolution. Science 1995, 267:87-90.
  • [31]Losos JB, Jackman TR, Larson A, de Queiroz K, Rodrı́guez-Schettino L: Contingency and determinism in replicated adaptive radiations of island lizards. Science 1998, 279:2115-2118.
  • [32]Gonzalez-Voyer A, Fitzpatrick JL, Kolm N: Sexual selection determines parental care patterns in cichlid fishes. Evolution 2008, 62:2015-2026.
  • [33]Pagel M: Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proc R Soc B 1994, 255:37-45.
  • [34]Wahlberg N, Brower AVZ, Nylin S: Phylogenetic relationships and historical biogeography of tribes and genera in the subfamily Nymphalinae (Lepidoptera: Nymphalidae). Biol J Linn Soc 2005, 86:227-251.
  • [35]Wahlberg N: That awkward age for butterflies: insights from the age of the butterfly subfamily Nymphalinae (Lepidoptera: Nymphalidae). Syst Biol 2006, 55:703-714.
  • [36]Wahlberg N, Leneveu J, Kodandaramaiah U, Pena C, Nylin S, Freitas AVL, Brower AVZ: Nymphalid butterflies diversify following near demise at the Cretaceous/Tertiary boundary. Proc R Soc B 2009, 276:4295-4302.
  • [37]Nylin S, Wahlberg N: Does plasticity drive speciation? Host-plant shifts and diversification in nymphalinae butterflies (Lepidoptera: Nymphalidae) during the tertiary. Biol J Linn Soc 2008, 94:115-130.
  • [38]Leneveu J, Chichvarkhin A, Wahlberg N: Varying rates of diversification in the genus Melitaea (Lepidoptera: Nymphalidae) during the past 20 million years. Biol J Linn Soc 2009, 97:346-361.
  • [39]Kodandaramaiah U, Wahlberg N: Out-of-Africa origin and dispersal-mediated diversification of the butterfly genus Junonia (Nymphalidae: Nymphalinae). J Evol Biol 2007, 20:2181-2191.
  • [40]Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nuc Acids Res 1994, 22:4673-4680.
  • [41]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28:2731-2739.
  • [42]Kômoto N, Yukuhiro K, Ueda K, Tomita S: Exploring the molecular phylogeny of phasmids with whole mitochondrial genome sequences. Mol Phylogenet Evol 2011, 58:43-52.
  • [43]Lanfear R, Calcott B, Ho SYW, Guindon S: Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol 2012, 29:1695-1701.
  • [44][http://tree.bio.ed.ac.uk/software/tracer/] webcite Rambaut A, Drummond AJ: Tracer v 1.5. []
  • [45]Remane A: Die Grundlagen des Naturlichen Systems, der Vergleichenden Anatomie und der Phylogenetik. Theoretische Morphologie und Systematik I. Geest & Portig K.-G, Leipzig; 1952.
  • [46]Saint-Hilaire EG: Philosophie Anatomique, Tome Premiere. J. B. Baillière, Paris; 1818.
  • [47]Rieppel CO: Fundamentals of Comparative Biology. Birkhäuser Verlag, Basel; 1988.
  • [48]Willmott KR, Hall JW, Lamas G: Systematics of Hypanartia (Lepidoptera: Nymphalidae: Nymphalinae) with a test for geographical speciation mechanisms in the Andes. Syst Entomol 2001, 26:369-399.
  • [49]Nylin S, Nyblom K, Ronquist F, Janz N, Belicek J, Källersjö M: Phylogeny of Polygonia, Nymphalis and related butterflies (Lepidoptera: Nymphalidae): a total evidence analysis. Zool J Linn Soc 2001, 132:441-468.
  • [50]Oliver JC, Beaulieu JM, Gall LF, Piel WH, Monteiro A: Nymphaid eyespot serial homologues originate as a few individualized moduels. Proc R Soc B 2014, 281:20133262.
  • [51]Green PJ: Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 1995, 82:711-732.
  • [52]Paradis E, Claude J, Strimmer K: APE: analysis of phylogenetics and evolution in R language. Bioinformatics 2004, 20:289-290.
  • [53]Kass RE, Raftery AE: Bayes factors. J Am Stat Assoc 1995, 90:773-795.
  • [54]Reinheimer R, Vegetti AC, Rua GH: Macroevolution of panicoid inflorescences: a history of contingency and order of trait acquisition. Ann Bot 2013, 112:1613-1628.
  • [55]Santos-Gally R, Gonzalez-Voyer A, Arroyo J: Deconstructing heterostyly: the evolutionary role of incompatibility system, pollinators, and floral architecture. Evolution 2013, 67:2072-2082.
  • [56]Crespi BJ, Sandoval CP: Phylogenetic evidence for the evolution of ecological specialization in Timema walking-sticks. J Evol Biol 2000, 13:249-262.
  • [57]Santos JC, Coloma LA, Cannatella DC: Multiple, recurring origins of aposematism and diet specialization in poison frogs. Proc Natl Acad Sci U S A 2003, 100:12792-12797. doi:10.1073/pnas.2133521100
  • [58]Prudic KL, Oliver JC: Once a Batesian mimic, not always a Batesian mimic: mimic reverts back to ancestral phenotype when the model is absent. Proc R Soc B 2008, 22:1125-1132.
  • [59]Eimer TH: On Orthogenesis and Importance of Natural Selection in Species Formation. The opex court publishing company, Chicago; 1898.
  • [60]Hovasse R: Adaptation et Evolution. Hermann, Paris; 1950.
  • [61]Chittka L, Osorio D: Cognitive dimensions of predator responses to imperfect mimicry. PLoS Biol 2007, 5:12.
  • [62]Mostler G: Beobachtungen zur Frage der Wespenmimikry. Z Morphol Okol Tiere 1935, 29:381-454.
  • [63]Easley JL, Hassall C: Field estimates of survival do not reflect ratings of mimetic similarity in wasp-mimicking hover flies. Evol Ecol 2014, 28:387-396.
  • [64]Skorupski P, Raine NE: Speed–accuracy tradeoffs in animal decision making. Trends Ecol Evol 2009, 24:400-407.
  • [65]Penney HD, Hassall C, Skevington JH, Abbott KR, Sherratt TN: A comparative analysis of the evolution of imperfect mimicry. Nature 2012, 483:461-464.
  • [66]Carroll SB, Gates J, Keys D, Paddock SW, Panganiban GF, Selegur J, Williams JA: Pattern formation and eyespot determination in butterfly wings. Science 1994, 265:109-114.
  • [67]Beldade P, Brakefield PM: The genetics and evo-devo of butterfly wing patterns. Nat Rev Genet 2002, 3:442-452.
  • [68]Oliver JC, Tong XL, Gall LF, Piel WH, Monteiro A: A single origin for Nymphalid butterfly eyespots followed by widespread loss of associated gene expression. PLoS Genet 2012, 8:e1002893.
  • [69]Reed RD, Papa R, Martin A, Hines HM, Counterman BA, Pardo-Diaz C, Jiggins CD, Chamberlain NL, Kronforst MR, Chen R, Halder G, Nijhout HF, McMillan WO: optix drives the repeated convergent evolution of butterfly wing pattern mimicry. Science 2011, 333:1137-1141.
  • [70]Ellegren H: Genome sequencing and population genomics in non-model organisms. Trends Ecol Evol 2014, 29:51-63.
  • [71]Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, LeDuc RD, Friedman N, Regev A: De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protocols 2013, 8:1494-1512.
  文献评价指标  
  下载次数:13次 浏览次数:3次