期刊论文详细信息
BMC Evolutionary Biology
Contrasting parasite communities among allopatric colour morphs of the Lake Tanganyika cichlid Tropheus
Filip AM Volckaert4  Jos Snoeks3  Tine Huyse3  Antoine Pariselle2  Maarten Van Steenberge3  Maarten PM Vanhove3  Anna K Roose4  Jolien Bamps4  Arnout F Grégoir4  Pascal I Hablützel4  Joost AM Raeymaekers1 
[1] Zoological Institute, University of Basel, Vesalgasse 1, Basel, CH-4051, Switzerland;ISE-M, UMR5554 CNRS, UR226 IRD, Université Montpellier II – CC 063, Montpellier Cedex 5, F-34095, France;Ichthyology Unit, Department of African Zoology, Royal Museum for Central Africa, Leuvensesteenweg 13, Tervuren, B-3080, Belgium;Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven, Ch. Deberiotstraat, 32, Leuven, B-3000, Belgium
关键词: Sexual selection;    Parasite-driven speciation;    Natural selection;    Host-parasite associations;    Ecological speciation;    Endoparasite;    Ectoparasite;    Adaptive divergence;   
Others  :  1129928
DOI  :  10.1186/1471-2148-13-41
 received in 2012-11-26, accepted in 2013-01-17,  发布年份 2013
PDF
【 摘 要 】

Background

Adaptation to different ecological environments is thought to drive ecological speciation. This phenomenon culminates in the radiations of cichlid fishes in the African Great Lakes. Multiple characteristic traits of cichlids, targeted by natural or sexual selection, are considered among the driving factors of these radiations. Parasites and pathogens have been suggested to initiate or accelerate speciation by triggering both natural and sexual selection. Three prerequisites for parasite-driven speciation can be inferred from ecological speciation theory. The first prerequisite is that different populations experience divergent infection levels. The second prerequisite is that these infection levels cause divergent selection and facilitate adaptive divergence. The third prerequisite is that parasite-driven adaptive divergence facilitates the evolution of reproductive isolation. Here we investigate the first and the second prerequisite in allopatric chromatically differentiated lineages of the rock-dwelling cichlid Tropheus spp. from southern Lake Tanganyika (Central Africa). Macroparasite communities were screened in eight populations belonging to five different colour morphs.

Results

Parasite communities were mainly composed of acanthocephalans, nematodes, monogeneans, copepods, branchiurans, and digeneans. In two consecutive years (2011 and 2012), we observed significant variation across populations for infection with acanthocephalans, nematodes, monogeneans of the genera Gyrodactylus and Cichlidogyrus, and the copepod Ergasilus spp. Overall, parasite community composition differed significantly between populations of different colour morphs. Differences in parasite community composition were stable in time. The genetic structure of Tropheus populations was strong and showed a significant isolation-by-distance pattern, confirming that spatial isolation is limiting host dispersal. Correlations between parasite community composition and Tropheus genetic differentiation were not significant, suggesting that host dispersal does not influence parasite community diversification.

Conclusions

Subject to alternating episodes of isolation and secondary contact because of lake level fluctuations, Tropheus colour morphs are believed to accumulate and maintain genetic differentiation through a combination of vicariance, philopatric behaviour and mate discrimination. Provided that the observed contrasts in parasitism facilitate adaptive divergence among populations in allopatry (which is the current situation), and promote the evolution of reproductive isolation during episodes of sympatry, parasites might facilitate speciation in this genus.

【 授权许可】

   
2013 Raeymaekers et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150226134025780.pdf 1241KB PDF download
Figure 4. 40KB Image download
Figure 3. 42KB Image download
Figure 2. 170KB Image download
Figure 1. 132KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Hendry AP: Ecological speciation! Or the lack thereof? Can J Fish Aquat Sci 2009, 66(8):1383-1398.
  • [2]Schluter D: The Ecology of Adaptive Radiation. Oxford: Oxford University Press; 2000.
  • [3]Rundle HD, Nosil P: Ecological speciation. Ecol Lett 2005, 8(3):336-352.
  • [4]Gillespie R: Community assembly through adaptive radiation in Hawaiian spiders. Science 2004, 303(5656):356-359.
  • [5]De Busschere C, Hendrickx F, Van Belleghem SM, Backeljau T, Lens L, Baert L: Parallel habitat specialization within the wolf spider genus Hogna from the Galapagos. Mol Ecol 2010, 19(18):4029-4045.
  • [6]Seehausen O: African cichlid fish: a model system in adaptive radiation research. Proc R Soc B-Biol Sci 2006, 273(1597):1987-1998.
  • [7]Losos JB, Jackman TR, Larson A, de Queiroz K, Rodríguez-Schettino L: Contingency and determinism in replicated adaptive radiations of island lizards. Science 1998, 279(5359):2115-2118.
  • [8]Koblmüller S, Schliewen UK, Duftner N, Sefc KM, Katongo C, Sturmbauer C: Age and spread of the haplochromine cichlid fishes in Africa. Mol Phylogenet Evol 2008, 49(1):153-169.
  • [9]Turner GF, Seehausen O, Knight ME, Allender CJ, Robinson RL: How many species of cichlid fishes are there in African lakes? Mol Ecol 2001, 10(3):793-806.
  • [10]Kornfield I, Smith PF: African cichlid fishes: Model systems for evolutionary biology. Annu Rev Ecol Syst 2000, 31:163-+.
  • [11]Sturmbauer C, Baric S, Salzburger W, Ruber L, Verheyen E: Lake level fluctuations synchronize genetic divergences of cichlid fishes in african lakes. Mol Biol Evol 2001, 18(2):144-154.
  • [12]Kocher TD: Adaptive evolution and explosive speciation: the cichlid fish model. Nat Rev Genet 2004, 5(4):288-298.
  • [13]Salzburger W: The interaction of sexually and naturally selected traits in the adaptive radiations of cichlid fishes. Mol Ecol 2009, 18(2):169-185.
  • [14]Poulin R, Morand S: The diversity of parasites. Q Rev Biol 2000, 75(3):277-293.
  • [15]Lively CM, Dybdahl MF: Parasite adaptation to locally common host genotypes. Nature 2000, 405(6787):679-681.
  • [16]Parker GA, Chubb JC, Ball MA, Roberts GN: Evolution of complex life cycles in helminth parasites. Nature 2003, 425(6957):480-484.
  • [17]Raeymaekers JAM, Huyse T, Maelfait H, Hellemans B, Volckaert FAM: Community structure, population structure and topographical specialisation of Gyrodactylus (Monogenea) ectoparasites living on sympatric stickleback species. Folia Parasitol 2008, 55(3):187-196.
  • [18]Decaestecker E, Gaba S, Raeymaekers JAM, Stoks R, Van Kerckhoven L, Ebert D, De Meester L: Host-parasite ‘Red Queen’ dynamics archived in pond sediment. Nature 2007, 450(7171):870-873.
  • [19]Thompson JN: The evolution of species interactions. Science 1999, 284(5423):2116-2118.
  • [20]Eizaguirre C, Lenz TL, Sommerfeld RD, Harrod C, Kalbe M, Milinski M: Parasite diversity, patterns of MHC II variation and olfactory based mate choice in diverging three-spined stickleback ecotypes. Evol Ecol 2011, 25(3):605-622.
  • [21]Blais J, Rico C, van Oosterhout C, Cable J, Turner GF, Bernatchez L: MHC adaptive divergence between closely related and sympatric african cichlids. PLoS One 2007, 28:e734.
  • [22]MacColl ADC: Parasites may contribute to ‘magic trait’ evolution in the adaptive radiation of three-spined sticklebacks, Gasterosteus aculeatus (Gasterosteiformes: Gasterosteidae). Biol J Linnean Soc 2009, 96(2):425-433.
  • [23]Karvonen A, Seehausen O: The role of parasitism in adaptive radiations — when might parasites promote and when might they constrain ecological speciation? International Journal of Ecology 2012, 2012:Article ID 280169.
  • [24]Summers K, McKeon S, Sellars J, Keusenkothen M, Morris J, Gloeckner D, Pressley C, Price B, Snow H: Parasitic exploitation as an engine of diversity. Biol Rev 2003, 78(4):639-675.
  • [25]Maan ME, Van Rooijen AMC, Van Alphen JJM, Seehausen OLE: Parasite-mediated sexual selection and species divergence in Lake Victoria cichlid fish. Biol J Linnean Soc 2008, 94(1):53-60.
  • [26]Maan ME, van der Spoel M, Jimenez PQ, van Alphen JJM, Seehausen O: Fitness correlates of male coloration in a Lake Victoria cichlid fish. Behav Ecol 2006, 17(5):691-699.
  • [27]Marcogliese DJ: Parasites: small players with crucial roles in the ecological theater. EcoHealth 2004, 1:151-164.
  • [28]Taylor MI, Turner GF, Robinson RL, Stauffer JR: Sexual selection, parasites and bower height skew in a bower-building cichlid fish. Anim Behav 1998, 56:379-384.
  • [29]Eizaguirre C, Lenz TL: Major histocompatibility complex polymorphism: dynamics and consequences of parasite-mediated local adaptation in fishes. J Fish Biol 2010, 77(9):2023-2047.
  • [30]Møller AP: Parasites and sexual selection - current status of the Hamilton and Zuk hypothesis. J Evol Biol 1990, 3(5–6):319-328.
  • [31]Eizaguirre C, Lenz TL, Traulsen A, Milinski M: Speciation accelerated and stabilized by pleiotropic major histocompatibility complex immunogenes. Ecol Lett 2009, 12(1):5-12.
  • [32]Gavrilets S: Fitness Landscapes and the Origin of Species. Princeton, NJ: Princeton University Press; 2004.
  • [33]Ono H, Ohuigin C, Tichy H, Klein J: Major-histocompatibility-complex variation in two species of cichlid fishes from Lake Malawi. Mol Biol Evol 1993, 10(5):1060-1072.
  • [34]Gillardin C, Vanhove MPM, Pariselle A, Huyse T, Volckaert FAM: Ancyrocephalidae (Monogenea) of Lake Tanganyika: II: description of the first Cichlidogyrus spp. parasites from Tropheini fish hosts (Teleostei, Cichlidae). Parasitol Res 2012, 110(1):305-313.
  • [35]Vanhove MPM, Snoeks J, Volckaert FAM, Huyse T: First description of monogenean parasites in Lake Tanganyika: the cichlid Simochromis diagramma (Teleostei, Cichlidae) harbours a high diversity of Gyrodactylus species (Platyhelminthes, Monogenea). Parasitology 2011, 138(3):364-380.
  • [36]Vanhove MPM, Volckaert FAM, Pariselle A: Ancyrocephalidae (Monogenea) of Lake Tanganyika: I: Four new species of Cichlidogyrus from Ophthalmotilapia ventralis (Teleostei: Cichlidae), the first record of this parasite family in the basin. Zoologia 2011, 28(2):253-263.
  • [37]Muterezi Bukinga F, Vanhove MPM, Van Steenberge M, Pariselle A: Ancyrocephalidae (Monogenea) of Lake Tanganyika: III: Cichlidogyrus infecting the world’s biggest cichlid and the non-endemic tribes Haplochromini, Oreochromini and Tylochromini (Teleostei, Cichlidae). Parasitol Res 2012, 111:2049-2061.
  • [38]Streelman JT, Danley PD: The stages of vertebrate evolutionary radiation. Trends Ecol Evol 2003, 18(3):126-131.
  • [39]Poulin R: Phylogeny, ecology, and the richness of parasite communitities in vertebrates. Ecol Monogr 1995, 65(3):283-302.
  • [40]Choudhury A, Dick TA: Richness and diversity of helminth communities in tropical freshwater fishes: empirical evidence. J Biogeogr 2000, 27(4):935-956.
  • [41]Mwita C, Nkwengulila G: Determinants of the parasite community of clariid fishes from Lake Victoria, Tanzania. J Helminthol 2008, 82(1):7-16.
  • [42]Luque JL, Poulin R: Linking ecology with parasite diversity in Neotropical fishes. J Fish Biol 2008, 72(1):189-204.
  • [43]Hemmingsen W, Halvorsen O, MacKenzie K: The occurrence of some metazoan parasites of Atlantic cod, Gadus morhua L., in relation to age and sex of the host in Balsfjord (70 degrees N), North Norway. Polar Biol 2000, 23(5):368-372.
  • [44]Takemoto RM, Pavanelli GC, Lizama MAP, Luque JL, Poulin R: Host population density as the major determinant of endoparasite species richness in floodplain fishes of the upper Parana River, Brazil. J Helminthol 2005, 79(1):75-84.
  • [45]Machado MH, Pavanelli GC, Takemoto RM: Influence of the type of environment and of the hydrological level variation in endoparasitic infrapopulations of Pseudoplatystoma corruscans (Agassiz) and Schizodon borelli (Boulenger) (Osteichthyes) of the high Parana River, Brazil. Revista Brasileira de Zoologia 1995, 12(4):961-976.
  • [46]Konings A: Tanganyika cichlids in their natural habitat. El Paso, Texas: Cichlid Press; 1998.
  • [47]Schupke P: African Cichlids II. Tanganyika I. Tropheus. Rodgau: Aqualog Verlag A.C.S. GmbH; 2003.
  • [48]Meyer A, Knowles LL, Verheyen E: Widespread geographical distribution of mitochondrial haplotypes in rock-dwelling cichlid fishes from Lake Tanganyika. Mol Ecol 1996, 5(3):341-350.
  • [49]Sefc KM, Baric S, Salzburger W, Sturmbauer C: Species-specific population structure in rock-specialized sympatric cichlid species in Lake Tanganyika, East Africa. J Mol Evol 2007, 64(1):33-49.
  • [50]Eschmeyer WN: Catalog of Fishes electronic version (14 05 2012). 2012. http://research.calacademy.org/research/ichthyology/catalog/fishcatmain.asp webcite
  • [51]Snoeks J, Rüber L, Verheyen E: The Tanganyika problem: comments on the taxonomy and distribution patterns of its cichlid fauna. In: Speciation in ancient lakes. Edited by Verlagsdruckerei Ss. Stuttgart; 1994:355-372.
  • [52]Van Steenberge M, Vanhove MPM, Risasi DM, N’Sibula TM, Bukinga FM, Pariselle A, Gillardin C, Vreven E, Raeymaekers JAM, Huyse T, et al.: A recent inventory of the fishes of the north-western and central western coast of Lake Tanganyika (Democratic Republic Congo). Acta Ichthyol Piscat 2011, 41(3):201-214.
  • [53]Scholz CA, Rosendahl BR: Low lake stands in Lakes Malawi and Tanganyika, East Africa, delineated with multifold seismic data. Science 1988, 240(4859):1645-1648.
  • [54]Sturmbauer C, Meyer A: Genetic divergence, speciation and morphological stasis in a lineage of African cichlid fishes. Nature 1992, 358(6387):578-581.
  • [55]Koblmüller S, Salzburger W, Obermüller B, Eigner E, Sturmbauer C, Sefc KM: Separated by sand, fused by dropping water: habitat barriers and fluctuating water levels steer the evolution of rock-dwelling cichlid populations in Lake Tanganyika. Mol Ecol 2011, 20(11):2272-2290.
  • [56]Egger B, Koblmüller S, Sturmbauer C, Sefc KM: Nuclear and mitochondrial data reveal different evolutionary processes in the Lake Tanganyika cichlid genus Tropheus. BMC Evol Biol 2007, 7:14.
  • [57]Baric S, Salzburger W, Sturmbauer C: Phylogeography and evolution of the Tanganyikan cichlid genus Tropheus based upon mitochondrial DNA sequences. J Mol Evol 2003, 56(1):54-68.
  • [58]Mattersdorfer K, Koblmüller S, Sefc KM: AFLP genome scans suggest divergent selection on colour patterning in allopatric colour morphs of a cichlid fish. Mol Ecol 2012, 21(14):3531-3544.
  • [59]Salzburger W, Niederstätter H, Brandstätter A, Berger B, Parson W, Snoeks J, Sturmbauer C: Colour-assortative mating among populations of Tropheus moorii, a cichlid fish from Lake Tanganyika, East Africa. Proc R Soc B-Biol Sci 2006, 273(1584):257-266.
  • [60]Raeymaekers JAM, Boisjoly M, Delaire L, Berner D, Räsänen K, Hendry AP: Testing for mating isolation between ecotypes: laboratory experiments with lake, stream and hybrid stickleback. J Evol Biol 2010, 23(12):2694-2708.
  • [61]Coyne JA, Orr HA: Speciation. Sunderland, Massachusetts: Sinauer Associates; 2004.
  • [62]Egger B, Mattersdorfer K, Sefc KM: Variable discrimination and asymmetric preferences in laboratory tests of reproductive isolation between cichlid colour morphs. J Evol Biol 2010, 23(2):433-439.
  • [63]Egger B, Sefc KM, Makasa L, Sturmbauer C, Salzburger W: Introgressive hybridization between color morphs in a population of cichlid fishes twelve years after human-induced secondary admixis. J Hered 2012.
  • [64]Egger B, Obermüller B, Eigner E, Sturmbauer C, Sefc KM: Assortative mating preferences between colour morphs of the endemic Lake Tanganyika cichlid genus Tropheus. Hydrobiologia 2008, 615:37-48.
  • [65]Amorim MCP, Knight ME, Stratoudakis Y, Turner GF: Differences in sounds made by courting males of three closely related Lake Malawi cichlid species. J Fish Biol 2004, 65(5):1358-1371.
  • [66]Blais J, Plenderleith M, Rico C, Taylor MI, Seehausen O, van Oosterhout C, Turner GF: Assortative mating among Lake Malawi cichlid fish populations is not simply predictable from male nuptial colour. BMC Evol Biol 2009, 9:53.
  • [67]Steinwender B, Koblmüller S, Sefc KM: Concordant female mate preferences in the cichlid fish Tropheus moorii. Hydrobiologia 2012, 682(1):121-130.
  • [68]Wolinska J, Keller B, Bittner K, Lass S, Spaak P: Do parasites lower Daphnia hybrid fitness? Limnol Oceanogr 2004, 49(4):1401-1407.
  • [69]Sage RD, Heyneman D, Lim KC, Wilson AC: Wormy mice in a hybrid zone. Nature 1986, 324(6092):60-63.
  • [70]Parris MJ: Hybrid response to pathogen infection in interspecific crosses between two amphibian species (Anura: Ranidae). Evol Ecol Res 2004, 6(3):457-471.
  • [71]Lebrun N, Renaud F, Berrebi P, Lambert A: Hybrid zones and host-parasite relationships - effect on the evolution of parasitic specificity. Evolution 1992, 46(1):56-61.
  • [72]Moulia C, Lebrun N, Loubes C, Marin R, Renaud F: Hybrid vigor against parasites in interspecific crosses between two mice species. Heredity 1995, 74:48-52.
  • [73]Baird SJE, Ribas A, Macholan M, Albrecht T, Pialek J, de Bellocq JG: Where are the wormy mice? A reexamination of hybrid parasitism in the European house mouse hybrid zone. Evolution 2012, 66(9):2757-2772.
  • [74]Malmberg G: On the occurrence of Gyrodactylus on Swedish fishes. Skrifter utgivna av Södra Sveriges Fiskeriföreningen 1957, 1956:19-76.
  • [75]Taylor MI, Meardon F, Turner GF, Seehausen O, Mrosso HDJ, Rico C: Characterization of tetranucleotide microsatellite loci in a Lake Victorian haplochromine cichlid fish: a Pundamilia pundamilia x Pundamilia nyererei hybdrid. Molecular Ecology notes 2002, 2:443-445.
  • [76]Van Oppen MHJ, Rico C, Deutsch JC, Turner GF, Hewitt GM: Isolation and characterization of microsatellite loci in the cichlid fish Pseudotropheus zebra. Mol Ecol 1997, 6:387-388.
  • [77]Zardoya R, Vollmer D, Craddock C, Streelman T, Karl S, Meyer A: Evolutionary conservation of microsatellite flanking regoins and the phylogeny of cichlid fishes (Pisces: Perciformes). Proc R Soc B-Biol Sci 1996, 263:1589-1598.
  • [78]Lee WJ, Kocher TD: Microsatellite DNA markers for genetic mapping in Oreochromis niloticus. J Fish Biol 1996, 49:169-171.
  • [79]Parker A, Kornfield I: Polygynandry in Pseudotropheus zebra, a cichlid fish from Lake Malawi. Environ Biol Fishes 1996, 47:345-352.
  • [80]Legendre P, Gallagher ED: Ecologically meaningful transformations for ordination of species data. Oecologia 2001, 129:271-280.
  • [81]Jost L: GST and its relatives do not measure differentiation. Mol Ecol 2008, 17(18):4015-4026.
  • [82]Gerlach G, Jueterbock A, Kraemer P, Deppermann J, Harmand P: Calculations of population differentiation based on GST and D: forget GST but not all of statistics! Mol Ecol 2010, 19(18):3845-3852.
  • [83]Pritchard JK, Stephens M, Donnelly P: Inference of population structure using multilocus genotype data. Genetics 2000, 155(2):945-959.
  • [84]Rózsa L, Reiczigel J, Majoros G: Quantifying parasites in samples of hosts. J Parasitol 2000, 86(2):228-232.
  • [85]Oksanen J, Kindt R, Legendre P, O’Hara RB, Stevens MHH Vegan: Community Ecology Package. R package version 1.8-8; 2007. http://r-forge.r-project.org/projects/vegan webcite
  • [86]Anderson MJ: A new method for non-parametric multivariate analysis of variance. Austral Ecol 2001, 26(1):32-46.
  • [87]Coulter GW: Composition of the flora and fauna. In Lake Tanganyika and its Life. Edited by Coulter GW. Oxford, UK: Oxford University Press; 1991:200-274.
  • [88]Hett ML: Report on the Linguatulidae. Zoological Results of the 3rd Tanganyika Expedition (1904–1905). Proceedings of the Zoological Society of London 1924, 11:161.
  • [89]de Beauchamp PM: Sur quelques parasites provenant du Congo belge. Revue de zoologie et de botanique africaines 1914, 4:109-116.
  • [90]Fryer G: The parasitic Crustacea of African freshwater fishes: their biology and distribution. J Zool 1968, 156:45-95.
  • [91]Fuhrmann O, Baer JG: Report on the Cestoda. Zoological results of the Third Tanganyika Expedition (1904–1905). Proceedings of the Zoological Society of London 1925, 1(6–7):79-100.
  • [92]Moore JP: Additions to our knowledge of African leeches (Hirudinea). Proceedings of the Academy of Natural Sciences 1938, 90:297-360.
  • [93]Sciacchitano I: Contributo alla conoscenza dell’Africa Centrale. Revue de zoologie et de botanique africaines 1962, 65(3–4):276-381.
  • [94]Fain A: Les Pentastomides de l’Afrique Centrale. Annales du Musée Royal de l’Afrique Centrale 1961, 8(92):1-115.
  • [95]Prudhoe S: Trematoda, Cestoda and Acanthocephala. Exploration Hydrobiologique du Lac Tanganyika (1946–1947). Résultats Scientifiques 1951, 3(2):2-9.
  文献评价指标  
  下载次数:2次 浏览次数:14次