期刊论文详细信息
BMC Complementary and Alternative Medicine
Tuscan black kale sprout extract bioactivated with myrosinase: a novel natural product for neuroprotection by inflammatory and oxidative response during cerebral ischemia/reperfusion injury in rat
Emanuela Mazzon2  Placido Bramanti2  Renato Iori1  Gina Rosalinda De Nicola1  Maria Galuppo2  Sabrina Giacoppo2 
[1] Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria, Centro di ricerca per le colture industriali (CRA-CIN), Via di Corticella 133, Bologna, 40128, Italy;IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, contrada Casazza, Messina, 98124, Italy
关键词: Apoptosis;    Oxidative stress;    Blood–brain barrier;    R-Sulforaphane;    R S -(−)-glucoraphanin;    Glucosinolates;   
Others  :  1233205
DOI  :  10.1186/s12906-015-0929-4
 received in 2015-06-22, accepted in 2015-11-02,  发布年份 2015
PDF
【 摘 要 】

Background

Cerebral ischemia and reperfusion (CIR) is a pathological condition characterized by a first blood supply restriction to brain followed by the consequent restoration of blood flow and simultaneous reoxygenation.

The aim of this study was to evaluate the neuroprotective effects of Tuscan black kale sprout extract (TBK-SE) bioactivated with myrosinase enzyme, assessing its capability to preserve blood–brain barrier (BBB), in a rat model of CIR.

Methods

CIR was induced in rats according to a classic model of carotid artery occlusion for a time period of 1 h and the reperfusion time was prolonged for seven days.

Results

By immunohistochemical evaluation and western blot analysis of brain and cerebellum tissues, our data have clearly shown that administration of bioactive TBK-SE is able to restore alterations of tight junction components (claudin-5 immunolocalization). Also, bioactive TBK-SE reduces some inflammatory key-markers (p-selectin, GFAP, Iba-1, ERK1/2 and TNF-α), as well as the triggering of neuronal apoptotic death pathway (data about Bax/Bcl-2 balance, p53 and cleaved-caspase 3) and the generation of radicalic species by oxidative stress (results focused on iNOS, nitrotyrosine and Nrf2).

Conclusion

Taken together, our findings lead to believe that bioactive TBK-SE exerts pharmacological properties in protecting BBB integrity through a mechanism of action that involves a modulation of inflammatory and oxidative pathway as well into control of neuronal death.

【 授权许可】

   
2015 Giacoppo et al.

【 预 览 】
附件列表
Files Size Format View
20151119035636644.pdf 1922KB PDF download
Fig. 10. 32KB Image download
Fig. 9. 25KB Image download
Fig. 8. 91KB Image download
Fig. 7. 86KB Image download
Fig. 6. 50KB Image download
Fig. 5. 30KB Image download
Fig. 4. 197KB Image download
20140727061021841.pdf 211KB PDF download
Fig. 2. 134KB Image download
Fig. 1. 17KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

【 参考文献 】
  • [1]Feigin VL, Lawes CM, Bennett DA, Anderson CS. Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol. 2003; 2:43-53.
  • [2]Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ et al.. Heart disease and stroke statistics--2014 update: a report from the American Heart Association. Circulation. 2014; 129:e28-e292.
  • [3]Dong S, Tong X, Li J, Huang C, Hu C, Jiao H et al.. Total flavonoid of Litsea coreana leve exerts anti-oxidative effects and alleviates focal cerebral ischemia/reperfusion injury. Neural Regen Res. 2013; 8:3193-3202.
  • [4]Doyle KP, Simon RP, Stenzel-Poore MP. Mechanisms of ischemic brain damage. Neuropharmacology. 2008; 55:310-318.
  • [5]Ritz MF, Curin Y, Mendelowitsch A, Andriantsitohaina R. Acute treatment with red wine polyphenols protects from ischemia-induced excitotoxicity, energy failure and oxidative stress in rats. Brain Res. 2008; 1239:226-234.
  • [6]Sandoval KE, Witt KA. Blood–brain barrier tight junction permeability and ischemic stroke. Neurobiol Dis. 2008; 32:200-219.
  • [7]Lochhead JJ, McCaffrey G, Quigley CE, Finch J, DeMarco KM, Nametz N et al.. Oxidative stress increases blood–brain barrier permeability and induces alterations in occludin during hypoxia-reoxygenation. J Cereb Blood Flow Metab. 2010; 30:1625-1636.
  • [8]Sugawara T, Chan PH. Reactive oxygen radicals and pathogenesis of neuronal death after cerebral ischemia. Antioxid Redox Signal. 2003; 5:597-607.
  • [9]Alavijeh MS, Chishty M, Qaiser MZ, Palmer AM. Drug metabolism and pharmacokinetics, the blood–brain barrier, and central nervous system drug discovery. NeuroRx. 2005; 2:554-571.
  • [10]Dinkova-Kostova AT, Kostov RV. Glucosinolates and isothiocyanates in health and disease. Trends Mol Med. 2012; 18:337-347.
  • [11]Zhang X, Shu XO, Xiang YB, Yang G, Li H, Gao J et al.. Cruciferous vegetable consumption is associated with a reduced risk of total and cardiovascular disease mortality. Am J Clin Nutr. 2011; 94:240-246.
  • [12]Giacoppo S, Galuppo M, Iori R, De Nicola GR, Bramanti P, Mazzon E. The protective effects of bioactive (R S )-glucoraphanin on the permeability of the mice blood–brain barrier following experimental autoimmune encephalomyelitis. Eur Rev Med Pharmacol Sci. 2014; 18:194-204.
  • [13]Zhao J, Kobori N, Aronowski J, Dash PK. Sulforaphane reduces infarct volume following focal cerebral ischemia in rodents. Neurosci Lett. 2006; 393:108-112.
  • [14]Holst B, Williamson G. A critical review of the bioavailability of glucosinolates and related compounds. Nat Prod Rep. 2004; 21:425-447.
  • [15]Fahey JW, Zalcmann AT, Talalay P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry. 2001; 56:5-51.
  • [16]Giacoppo S, Galuppo M, Iori R, De Nicola GR, Cassata G, Bramanti P et al.. Protective role of (R S )-glucoraphanin bioactivated with myrosinase in an experimental model of multiple sclerosis. CNS Neurosci Ther. 2013; 19:577-584.
  • [17]Galuppo M, Giacoppo S, De Nicola GR, Iori R, Mazzon E, Bramanti P. R S -Glucoraphanin bioactivated with myrosinase treatment counteracts proinflammatory cascade and apoptosis associated to spinal cord injury in an experimental mouse model. J Neurol Sci. 2013; 334:88-96.
  • [18]Galuppo M, Iori R, De Nicola GR, Bramanti P, Mazzon E. Anti-inflammatory and anti-apoptotic effects of (R S )-glucoraphanin bioactivated with myrosinase in murine sub-acute and acute MPTP-induced Parkinson’s disease. Bioorg Med Chem. 2013; 21:5532-5547.
  • [19]EEC Regulation 1864/90, Enclosure VIII1990.
  • [20]Melega S, Canistro D, De Nicola GR, Lazzeri L, Sapone A, Paolini M. Protective effect of Tuscan black cabbage sprout extract against serum lipid increase and perturbations of liver antioxidant and detoxifying enzymes in rats fed a high-fat diet. Br J Nutr. 2013; 110:988-997.
  • [21]Pessina A, Thomas RM, Palmieri S, Luisi PL. An improved method for the purification of myrosinase and its physicochemical characterization. Arch Biochem Biophys. 1990; 280:383-389.
  • [22]Giacoppo S, Galuppo M, Iori R, De Nicola GR, Bramanti P, Mazzon E. (R S )-glucoraphanin purified from Tuscan black kale and bioactivated with myrosinase enzyme protects against cerebral ischemia/reperfusion injury in rats. Fitoterapia. 2014; 99:166-177.
  • [23]Awooda HA, Lutfi MF, Sharara GM, Saeed AM. Role of N-Nitro-L-Arginine-Methylester as anti-oxidant in transient cerebral ischemia and reperfusion in rats. Exp Transl Stroke Med. 2013; 5:1. BioMed Central Full Text
  • [24]Pignataro G, Studer FE, Wilz A, Simon RP, Boison D. Neuroprotection in ischemic mouse brain induced by stem cell-derived brain implants. J Cereb Blood Flow Metab. 2007; 27:919-927.
  • [25]Manley GT, Fujimura M, Ma T, Noshita N, Filiz F, Bollen AW et al.. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med. 2000; 6:159-163.
  • [26]Yilmaz G, Granger DN. Leukocyte recruitment and ischemic brain injury. Neuromolecular Med. 2010; 12:193-204.
  • [27]Skaper SD, Giusti P, Facci L. Microglia and mast cells: two tracks on the road to neuroinflammation. Faseb J. 2012; 26:3103-3117.
  • [28]McColl BW, Rothwell NJ, Allan SM. Systemic inflammation alters the kinetics of cerebrovascular tight junction disruption after experimental stroke in mice. J Neurosci. 2008; 28:9451-9462.
  • [29]Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N et al.. Size-selective loosening of the blood–brain barrier in claudin-5-deficient mice. J Cell Biol. 2003; 161:653-660.
  • [30]Patel AR, Ritzel R, McCullough LD, Liu F. Microglia and ischemic stroke: a double-edged sword. Int J Physiol Pathophysiol Pharmacol. 2013; 5:73-90.
  • [31]Jin R, Song Z, Yu S, Piazza A, Nanda A, Penninger JM et al.. Phosphatidylinositol-3-kinase gamma plays a central role in blood–brain barrier dysfunction in acute experimental stroke. Stroke. 2011; 42:2033-2044.
  • [32]Ishikawa M, Cooper D, Russell J, Salter JW, Zhang JH, Nanda A et al.. Molecular determinants of the prothrombogenic and inflammatory phenotype assumed by the postischemic cerebral microcirculation. Stroke. 2003; 34:1777-1782.
  • [33]Ito D, Tanaka K, Suzuki S, Dembo T, Fukuuchi Y. Enhanced expression of Iba1, ionized calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain. Stroke. 2001; 32:1208-1215.
  • [34]Ohsawa K, Imai Y, Kanazawa H, Sasaki Y, Kohsaka S. Involvement of Iba1 in membrane ruffling and phagocytosis of macrophages/microglia. J Cell Sci. 2000; 113:3073-3084.
  • [35]Iadecola C, Anrather J. The immunology of stroke: from mechanisms to translation. Nat Med. 2011; 17:796-808.
  • [36]Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev Neurosci. 2006; 7:41-53.
  • [37]Liu Y, Hu J, Wu J, Zhu C, Hui Y, Han Y et al.. alpha7 nicotinic acetylcholine receptor-mediated neuroprotection against dopaminergic neuron loss in an MPTP mouse model via inhibition of astrocyte activation. J Neuroinflammation. 2012; 9:98. BioMed Central Full Text
  • [38]Barreto G, White RE, Ouyang Y, Xu L, Giffard RG. Astrocytes: targets for neuroprotection in stroke. Cent Nerv Syst Agents Med Chem. 2011; 11:164-173.
  • [39]Sun RC, Yang SD, Zhou ZY, Shen CL, Shao JF, Liang JB et al.. Pathologic and immunohistochemical study on lethal primary brain stem injury. Zhonghua Bing Li Xue Za Zhi. 2009; 38:158-162.
  • [40]Burnstock G. Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discov. 2008; 7:575-590.
  • [41]Narayanan SV, Dave KR, Saul I, Perez-Pinzon MA. Resveratrol Preconditioning Protects Against Cerebral Ischemic Injury via Nuclear Erythroid 2-Related Factor 2. Stroke. 2015; 46:1626-1632.
  • [42]Jing X, Ren D, Wei X, Shi H, Zhang X, Perez RG et al.. Eriodictyol-7-O-glucoside activates Nrf2 and protects against cerebral ischemic injury. Toxicol Appl Pharmacol. 2013; 273:672-679.
  • [43]Calkins MJ, Vargas MR, Johnson DA, Johnson JA. Astrocyte-specific overexpression of Nrf2 protects striatal neurons from mitochondrial complex II inhibition. Toxicol Sci. 2010; 115:557-568.
  • [44]Vargas MR, Johnson JA. The Nrf2-ARE cytoprotective pathway in astrocytes. Expert Rev Mol Med. 2009; 11:e17.
  • [45]LaPash Daniels CM, Austin EV, Rockney DE, Jacka EM, Hagemann TL, Johnson DA et al.. Beneficial effects of Nrf2 overexpression in a mouse model of Alexander disease. J Neurosci. 2012; 32:10507-10515.
  • [46]Mignot C, Boespflug-Tanguy O, Gelot A, Dautigny A, Pham-Dinh D, Rodriguez D. Alexander disease: putative mechanisms of an astrocytic encephalopathy. Cell Mol Life Sci. 2004; 61:369-385.
  • [47]Willis CL. Imaging in vivo astrocyte/endothelial cell interactions at the blood–brain barrier. Methods Mol Biol. 2012; 814:515-529.
  • [48]Mitrasinovic OM, Grattan A, Robinson CC, Lapustea NB, Poon C, Ryan H et al.. Microglia overexpressing the macrophage colony-stimulating factor receptor are neuroprotective in a microglial-hippocampal organotypic coculture system. J Neurosci. 2005; 25:4442-4451.
  • [49]Awooda HA, Lutfi MF, Sharara GGM, Saeed AM. Oxidative/nitrosative stress in rats subjected to focal cerebral ischemia/reperfusion. Int J Health Sci (Qassim). 2015; 9:17-24.
  • [50]Kubes P, Suzuki M, Granger DN. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci U S A. 1991; 88:4651-4655.
  • [51]Sekhon B, Sekhon C, Khan M, Patel SJ, Singh I, Singh AK. N-Acetyl cysteine protects against injury in a rat model of focal cerebral ischemia. Brain Res. 2003; 971:1-8.
  • [52]Montalto MC, Hart ML, Jordan JE, Wada K, Stahl GL. Role for complement in mediating intestinal nitric oxide synthase-2 and superoxide dismutase expression. Am J Physiol Gastrointest Liver Physiol. 2003; 285:G197-G206.
  • [53]Cheung ECC, Slack RS. Emerging role for ERK as a key regulator of neuronal apoptosis. Sci STKE. 2004; 2004:PE45.
  • [54]Lu Z, Xu S. ERK1/2 MAP kinases in cell survival and apoptosis. IUBMB Life. 2006; 58:621-631.
  • [55]Leker RR, Aharonowiz M, Greig NH, Ovadia H. The role of p53-induced apoptosis in cerebral ischemia: effects of the p53 inhibitor pifithrin alpha. Exp Neurol. 2004; 187:478-486.
  • [56]Sheikh MS, Fornace AJ. Role of p53 family members in apoptosis. J Cell Physiol. 2000; 182:171-181.
  • [57]Cregan SP, MacLaurin JG, Craig CG, Robertson GS, Nicholson DW, Park DS et al.. Bax-dependent caspase-3 activation is a key determinant in p53-induced apoptosis in neurons. J Neurosci. 1999; 19:7860-7869.
  • [58]Xiang H, Kinoshita Y, Knudson CM, Korsmeyer SJ, Schwartzkroin PA, Morrison RS. Bax involvement in p53-mediated neuronal cell death. J Neurosci. 1998; 18:1363-1373.
  文献评价指标  
  下载次数:47次 浏览次数:12次