期刊论文详细信息
BMC Genomics
Transcriptome structure variability in Saccharomyces cerevisiae strains determined with a newly developed assembly software
Stefano Campanaro3  Laura Treu2  Alessandro Sardu1 
[1]Department of Biology, Division of Biochemistry, University of Fribourg, CH-1700 Fribourg, Switzerland
[2]Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
[3]Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
关键词: Reproductive process in single-celled organism;    Cell wall;    Non-coding RNA;    UTR;    Transcriptome variability;    Transcriptome assembly software;    Saccharomyces sensu-stricto;    Saccharomyces cerevisiae;   
Others  :  1090225
DOI  :  10.1186/1471-2164-15-1045
 received in 2014-09-18, accepted in 2014-11-20,  发布年份 2014
PDF
【 摘 要 】

Background

RNA-seq studies have an important role for both large-scale analysis of gene expression and for transcriptome reconstruction. However, the lack of software specifically developed for the analysis of the transcriptome structure in lower eukaryotes, has so far limited the comparative studies among different species and strains.

Results

In order to fill this gap, an innovative software called ORA (Overlapped Reads Assembler) was developed. This software allows a simple and reliable analysis of the transcriptome structure in organisms with a low number of introns. It can also determine the size and the position of the untranslated regions (UTR) and of polycistronic transcripts. As a case study, we analyzed the transcriptional landscape of six S. cerevisiae strains in two different key steps of the fermentation process. This comparative analysis revealed differences in the UTR regions of transcripts. By extending the transcriptome analysis to yeast species belonging to the Saccharomyces genus, it was possible to examine the conservation level of unknown non-coding RNAs and their putative functional role.

Conclusions

By comparing the results obtained using ORA with previous studies and with the transcriptome structure determined with other software, it was proven that ORA has a remarkable reliability. The results obtained from the training set made it possible to detect the presence of transcripts with variable UTRs between S. cerevisiae strains. Finally, we propose a regulatory role for some non-coding transcripts conserved within the Saccharomyces genus and localized in the antisense strand to genes involved in meiosis and cell wall biosynthesis.

【 授权许可】

   
2014 Sardu et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128155050479.pdf 1885KB PDF download
Figure 6. 117KB Image download
Figure 5. 48KB Image download
Figure 4. 141KB Image download
Figure 3. 65KB Image download
Figure 2. 40KB Image download
Figure 1. 85KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG: Life with 6000 genes. Science 1996, 274(5287):546. 563–7
  • [2]Yvert G, Brem RB, Whittle J, Akey JM, Foss E, Smith EN, Mackelprang R, Kruglyak L: Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors. Nat Genet 2003, 35(1):57-64.
  • [3]Kvitek DJ, Will JL, Gasch AP: Variations in stress sensitivity and genomic expression in diverse S. cerevisiae isolates. PLoS Genet 2008, 4(10):e1000223.
  • [4]Fay JC, McCullough HL, Sniegowski PD, Eisen MB: Population genetic variation in gene expression is associated with phenotypic variation in Saccharomyces cerevisiae. Genome Biol 2004, 5(4):R26. BioMed Central Full Text
  • [5]Sung HM, Wang TY, Wang D, Huang YS, Wu JP, Tsai HK, Tzeng J, Huang CJ, Lee YC, Yang P, Hsu J, Chang T, Cho CY, Weng LC, Lee TC, Chang TH, Li WH, Shih MC: Roles of trans and cis variation in yeast intraspecies evolution of gene expression. Mol Biol Evol 2009, 26(11):2533-2538.
  • [6]Busby MA, Gray JM, Costa AM, Stewart C, Stromberg MP, Barnett D, Chuang JH, Springer M, Marth GT: Expression divergence measured by transcriptome sequencing of four yeast species. BMC Genomics 2011, 12:635-2164-12-635.
  • [7]Tronchoni J, Medina V, Guillamon JM, Querol A, Perez-Torrado R: Transcriptomics of cryophilic Saccharomyces kudriavzevii reveals the key role of gene translation efficiency in cold stress adaptations. BMC Genomics 2014, 15:432-2164-15-432.
  • [8]David L, Huber W, Granovskaia M, Toedling J, Palm CJ, Bofkin L, Jones T, Davis RW, Steinmetz LM: A high-resolution map of transcription in the yeast genome. Proc Natl Acad Sci U S A 2006, 103(14):5320-5325.
  • [9]Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M: The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 2008, 320(5881):1344-1349.
  • [10]Xu Z, Wei W, Gagneur J, Perocchi F, Clauder-Munster S, Camblong J, Guffanti E, Stutz F, Huber W, Steinmetz LM: Bidirectional promoters generate pervasive transcription in yeast. Nature 2009, 457(7232):1033-1037.
  • [11]Neil H, Malabat C, D’Aubenton-Carafa Y, Xu Z, Steinmetz LM, Jacquier A: Widespread bidirectional promoters are the major source of cryptic transcripts in yeast. Nature 2009, 457(7232):1038-1042.
  • [12]Kung JT, Colognori D, Lee JT: Long noncoding RNAs: past, present, and future. Genetics 2013, 193(3):651-669.
  • [13]Martens JA, Laprade L, Winston F: Intergenic transcription is required to repress the Saccharomyces cerevisiae SER3 gene. Nature 2004, 429(6991):571-574.
  • [14]Martens JA, Wu PY, Winston F: Regulation of an intergenic transcript controls adjacent gene transcription in Saccharomyces cerevisiae. Genes Dev 2005, 19(22):2695-2704.
  • [15]Hongay CF, Grisafi PL, Galitski T, Fink GR: Antisense transcription controls cell fate in Saccharomyces cerevisiae. Cell 2006, 127(4):735-745.
  • [16]Leong HS, Dawson K, Wirth C, Li Y, Connolly Y, Smith DL, Wilkinson CR, Miller CJ: A global non-coding RNA system modulates fission yeast protein levels in response to stress. Nat Commun 2014, 5:3947.
  • [17]Wang Z, Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009, 10(1):57-63.
  • [18]Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008, 5(7):621-628.
  • [19]Li J, Jiang H, Wong WH: Modeling non-uniformity in short-read rates in RNA-Seq data. Genome Biol 2010, 11(5):R50. -2010-11-5-r50 BioMed Central Full Text
  • [20]Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 2010, 28(5):511-515.
  • [21]Guttman M, Garber M, Levin JZ, Donaghey J, Robinson J, Adiconis X, Fan L, Koziol MJ, Gnirke A, Nusbaum C: Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat Biotechnol 2010, 28(5):503-510.
  • [22]Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A: Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 2011, 29(7):644-652.
  • [23]Schulz MH, Zerbino DR, Vingron M, Birney E: Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 2012, 28(8):1086-1092.
  • [24]Robertson G, Schein J, Chiu R, Corbett R, Field M, Jackman SD, Mungall K, Lee S, Okada HM, Qian JQ: De novo assembly and analysis of RNA-seq data. Nat Methods 2010, 7(11):909-912.
  • [25]Martin J, Bruno VM, Fang Z, Meng X, Blow M, Zhang T, Sherlock G, Snyder M, Wang Z: Rnnotator: an automated de novo transcriptome assembly pipeline from stranded RNA-Seq reads. BMC Genomics 2010, 11:663-2164-11-663.
  • [26]Surget-Groba Y, Montoya-Burgos JI: Optimization of de novo transcriptome assembly from next-generation sequencing data. Genome Res 2010, 20(10):1432-1440.
  • [27]Li S, Dong X, Su Z: Directional RNA-seq reveals highly complex condition-dependent transcriptomes in E. coli K12 through accurate full-length transcripts assembling. BMC Genomics 2013, 14:520-2164-14-520.
  • [28]Novo M, Bigey F, Beyne E, Galeote V, Gavory F, Mallet S, Cambon B, Legras JL, Wincker P, Casaregola S, Dequin S: Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118. Proc Natl Acad Sci U S A 2009, 106(38):16333-16338.
  • [29]Treu L, Toniolo C, Nadai C, Sardu A, Giacomini A, Corich V, Campanaro S: The impact of genomic variability on gene expression in environmental Saccharomyces cerevisiae strains. Environ Microbiol 2014, 16(5):1378-1397.
  • [30]Kellis M, Patterson N, Endrizzi M, Birren B, Lander ES: Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 2003, 423(6937):241-254.
  • [31]Hooks KB, Delneri D, Griffiths-Jones S: Intron evolution in Saccharomycetaceae. Genome Biol Evol 2014, 6(9):2543-2556.
  • [32]Treu L, Campanaro S, Nadai C, Toniolo C, Nardi T, Giacomini A, Valle G, Blondin B, Corich V: Oxidative stress response and nitrogen utilization are strongly variable in Saccharomyces cerevisiae wine strains with different fermentation performances. Appl Microbiol Biotechnol 2014, 98(9):4119-4135.
  • [33]Taylor SL, Higley NA, Bush RK: Sulfites in foods: uses, analytical methods, residues, fate, exposure assessment, metabolism, toxicity, and hypersensitivity. Adv Food Res 1986, 30:1-76.
  • [34]Park H, Hwang YS: Genome-wide transcriptional responses to sulfite in Saccharomyces cerevisiae. J Microbiol 2008, 46(5):542-548.
  • [35]Dickinson JR, Salgado LE, Hewlins MJ: The catabolism of amino acids to long chain and complex alcohols in Saccharomyces cerevisiae. J Biol Chem 2003, 278(10):8028-8034.
  • [36]Hazelwood LA, Daran JM, van Maris AJ, Pronk JT, Dickinson JR: The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 2008, 74(8):2259-2266.
  • [37]Alexandre H, Rousseaux I, Charpentier C: Ethanol adaptation mechanisms in Saccharomyces cerevisiae. Biotechnol Appl Biochem 1994, 20((Pt 2)):173-183.
  • [38]Paravicini G, Braus G, Hutter R: Structure of the ARO3 gene of Saccharomyces cerevisiae. Mol Gen Genet 1988, 214(1):165-169.
  • [39]Freeberg MA, Han T, Moresco JJ, Kong A, Yang YC, Lu ZJ, Yates JR, Kim JK: Pervasive and dynamic protein binding sites of the mRNA transcriptome in Saccharomyces cerevisiae. Genome Biol 2013, 14(2):R13. BioMed Central Full Text
  • [40]Scannell DR, Zill OA, Rokas A, Payen C, Dunham MJ, Eisen MB, Rine J, Johnston M, Hittinger CT: The Awesome Power of Yeast Evolutionary Genetics: New Genome Sequences and Strain Resources for the Saccharomyces sensu stricto Genus. G3 (Bethesda) 2011, 1(1):11-25.
  • [41]Li BZ, Cheng JS, Ding MZ, Yuan YJ: Transcriptome analysis of differential responses of diploid and haploid yeast to ethanol stress. J Biotechnol 2010, 148(4):194-203.
  • [42]Rabitsch KP, Toth A, Galova M, Schleiffer A, Schaffner G, Aigner E, Rupp C, Penkner AM, Moreno-Borchart AC, Primig M, Esposito RE, Klein F, Knop M, Nasmyth K: A screen for genes required for meiosis and spore formation based on whole-genome expression. Curr Biol 2001, 11(13):1001-1009.
  • [43]Maier P, Rathfelder N, Maeder CI, Colombelli J, Stelzer EH, Knop M: The SpoMBe pathway drives membrane bending necessary for cytokinesis and spore formation in yeast meiosis. EMBO J 2008, 27(18):2363-2374.
  • [44]Esposito MS, Esposito RE, Arnaud M, Halvorson HO: Conditional mutants of meiosis in yeast. J Bacteriol 1970, 104(1):202-210.
  • [45]Coluccio A, Bogengruber E, Conrad MN, Dresser ME, Briza P, Neiman AM: Morphogenetic pathway of spore wall assembly in Saccharomyces cerevisiae. Eukaryot Cell 2004, 3(6):1464-1475.
  • [46]Heiman MG, Walter P: Prm1p, a pheromone-regulated multispanning membrane protein, facilitates plasma membrane fusion during yeast mating. J Cell Biol 2000, 151(3):719-730.
  • [47]Suda Y, Rodriguez RK, Coluccio AE, Neiman AM: A screen for spore wall permeability mutants identifies a secreted protease required for proper spore wall assembly. PLoS ONE 2009, 4(9):e7184.
  • [48]de Godoy LM, Olsen JV, Cox J, Nielsen ML, Hubner NC, Frohlich F, Walther TC, Mann M: Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature 2008, 455(7217):1251-1254.
  • [49]Campagna D, Albiero A, Bilardi A, Caniato E, Forcato C, Manavski S, Vitulo N, Valle G: PASS: a program to align short sequences. Bioinformatics 2009, 25(7):967-968.
  • [50]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup: The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25(16):2078-2079.
  • [51]Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA: Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 2012, 28(4):464-469.
  • [52]Prufer K, Stenzel U, Dannemann M, Green RE, Lachmann M, Kelso J: PatMaN: rapid alignment of short sequences to large databases. Bioinformatics 2008, 24(13):1530-1531.
  • [53]Trapnell C, Pachter L, Salzberg SL: TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009, 25(9):1105-1111.
  • [54]Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009, 10(3):R25. -2009-10-3-r25 BioMed Central Full Text
  • [55]Merriman B, Rothberg JM, Ion Torrent R&D Team: Progress in ion torrent semiconductor chip based sequencing. Electrophoresis 2012, 33(23):3397-3417.
  • [56]Levin JZ, Yassour M, Adiconis X, Nusbaum C, Thompson DA, Friedman N, Gnirke A, Regev A: Comprehensive comparative analysis of strand-specific RNA sequencing methods. Nat Methods 2010, 7(9):709-715.
  • [57]Campanaro S, Williams TJ, Burg DW, De Francisci D, Treu L, Lauro FM, Cavicchioli R: Temperature-dependent global gene expression in the Antarctic archaeon Methanococcoides burtonii. Environ Microbiol 2011, 13(8):2018-2038.
  • [58]Campanaro S, Pascale FD, Telatin A, Schiavon R, Bartlett DH, Valle G: The transcriptional landscape of the deep-sea bacterium Photobacterium profundum in both a toxR mutant and its parental strain. BMC Genomics 2012, 13:567-2164-13-567.
  • [59]Price MN, Huang KH, Alm EJ, Arkin AP: A novel method for accurate operon predictions in all sequenced prokaryotes. Nucleic Acids Res 2005, 33(3):880-892.
  • [60]Ozsolak F, Kapranov P, Foissac S, Kim SW, Fishilevich E, Monaghan AP, John B, Milos PM: Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation. Cell 2010, 143(6):1018-1029.
  • [61]Harrison P, Kumar A, Lan N, Echols N, Snyder M, Gerstein M: A small reservoir of disabled ORFs in the yeast genome and its implications for the dynamics of proteome evolution. J Mol Biol 2002, 316(3):409-419.
  文献评价指标  
  下载次数:15次 浏览次数:11次