期刊论文详细信息
BMC Medical Genomics
Integrated network analysis and logistic regression modeling identify stage-specific genes in Oral Squamous Cell Carcinoma
Vishal Acharya1  Vinay Randhawa1 
[1] Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
关键词: Logistic regression modeling;    Oral squamous cell carcinoma;    Microarray;    Hub gene;    Gene module;    Coexpression network analysis;   
Others  :  1219416
DOI  :  10.1186/s12920-015-0114-0
 received in 2015-03-09, accepted in 2015-07-06,  发布年份 2015
PDF
【 摘 要 】

Background

Oral squamous cell carcinoma (OSCC) is associated with substantial mortality and morbidity but, OSCC can be difficult to detect at its earliest stage due to its molecular complexity and clinical behavior. Therefore, identification of key gene signatures at an early stage will be highly helpful.

Methods

The aim of this study was to identify key genes associated with progression of OSCC stages. Gene expression profiles were classified into cancer stage-related modules, i.e., groups of genes that are significantly related to a clinical stage. For prioritizing the candidate genes, analysis was further restricted to genes with high connectivity and a significant association with a stage. To assess predictive power of these genes, a classification model was also developed and tested by 5-fold cross validation and on an independent dataset.

Results

The identified genes were enriched for significant processes and functional pathways, and various genes were found to be directly implicated in OSCC. Forward and stepwise, multivariate logistic regression analyses identified 13 key genes whose expression discriminated early- and late-stage OSCC with predictive accuracy (area under curve; AUC) of ~0.81 in a 5-fold cross-validation strategy.

Conclusions

The proposed network-driven integrative analytical approach can identify multiple genes significantly related to an OSCC stage; the classification model that is developed with these genes may help to distinguish cancer stages. The proposed genes and model hold promise for monitoring of OSCC stage progression, and our findings may facilitate cancer detection at an earlier stage, resulting in improved treatment outcomes.

【 授权许可】

   
2015 Randhawa and Acharya.

【 预 览 】
附件列表
Files Size Format View
20150717021615676.pdf 3208KB PDF download
Fig. 7. 17KB Image download
Fig. 6. 41KB Image download
Fig. 5. 119KB Image download
Fig. 4. 49KB Image download
Fig. 3. 39KB Image download
Fig. 2. 36KB Image download
Fig. 1. 55KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

【 参考文献 】
  • [1]Siegel R, Naishadham D, Jemal A: Cancer statistics. CA Cancer J Clin 2012, 62:10-29.
  • [2]Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D: Global cancer statistics. CA Cancer J Clin 2011, 61:69-90.
  • [3]Tiziani S, Lopes V, Günther UL: Early stage diagnosis of oral cancer using 1H NMR-based metabolomics. Neoplasia 2009, 11:269-276.
  • [4]Centers for Disease Control and Prevention: Improving diagnoses of oral cancer. :13–16.
  • [5]Ye H, Yu T, Temam S, Ziober BL, Wang J, Schwartz JL, et al.: Transcriptomic dissection of tongue squamous cell carcinoma. BMC Genomics 2008, 9:69.
  • [6]Arora S, Matta A, Shukla NK, Deo SVS, Ralhan R: Identification of differentially expressed genes in oral squamous cell carcinoma. Mol Carcinog 2005, 42:97-108.
  • [7]Kuo WP, Hasina R, Ohno-Machado L, Lingen MW: Classification and identification of genes associated with oral cancer based on gene expression profiles. A preliminary study. N Y State Dent J 2003, 69:23-26.
  • [8]Jiang Q, Yu Y-C, Ding X-J, Luo Y, Ruan H: Bioinformatics analysis reveals significant genes and pathways to target for oral squamous cell carcinoma. Asian Pacific J Cancer Prev 2014, 15:2273-2278.
  • [9]Chang S-W, Abdul-Kareem S, Merican AF, Zain RB: Oral cancer prognosis based on clinicopathologic and genomic markers using a hybrid of feature selection and machine learning methods. BMC Bioinformatics 2013, 14:170.
  • [10]Cui J, Li D, Zhang W, Shen L, Xu X: Bioinformatics analyses combined microarray identify the deregulated microRNAs in oral cancer. Oncol Lett 2014, 8:218-222.
  • [11]Cui J, Li F, Wang G, Fang X, Puett JD, Xu Y: Gene-expression signatures can distinguish gastric cancer grades and stages. PLoS One 2011., 6Article ID e17819
  • [12]Smith JJ, Deane NG, Wu F, Merchant NB, Zhang B, Jiang A, et al.: Experimentally derived metastasis gene expression profile predicts recurrence and death in patients with colon cancer. Gastroenterology 2010, 138:958-968.
  • [13]Horvát E-Á, Zhang JD, Uhlmann S, Sahin Ö, Zweig KA: A network-based method to assess the statistical significance of mild co-regulation effects. PLoS One 2013., 8Article ID e73413
  • [14]Zhang B, Horvath S: A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 2005, 4:17.
  • [15]Ivliev AE, ’t Hoen PAC, Sergeeva MG: Coexpression network analysis identifies transcriptional modules related to proastrocytic differentiation and sprouty signaling in glioma. Cancer Res 2010, 70:10060-10070.
  • [16]Horvath S, Nazmul-Hossain ANM, Pollard RPE, Kroese FGM, Vissink A, Kallenberg CGM, et al.: Systems analysis of primary Sjögren’s syndrome pathogenesis in salivary glands identifies shared pathways in human and a mouse model. Arthritis Res Ther 2012, 14:R238.
  • [17]Zhang J, Xiang Y, Ding L, Keen-Circle K, Borlawsky TB, Ozer HG, et al.: Using gene co-expression network analysis to predict biomarkers for chronic lymphocytic leukemia. BMC Bioinformatics 2010, 11(9):S5.
  • [18]Wang L, Tang H, Thayanithy V, Subramanian S, Oberg AL, Cunningham JM, et al.: Gene networks and microRNAs implicated in aggressive prostate cancer. Cancer Res 2009, 69:9490-9497.
  • [19]Kadarmideen HN, Watson-Haigh NS, Andronicos NM: Systems biology of ovine intestinal parasite resistance: disease gene modules and biomarkers. Mol Biosyst 2011, 7:235-246.
  • [20]Kommadath A, Bao H, Arantes AS, Plastow GS, Tuggle CK, Bearson SMD, et al.: Gene co-expression network analysis identifies porcine genes associated with variation in Salmonella shedding. BMC Genomics 2014, 15:452.
  • [21]Liu K-Q, Liu Z-P, Hao J-K, Chen L, Zhao X-M: Identifying dysregulated pathways in cancers from pathway interaction networks. BMC Bioinformatics 2012, 13:126.
  • [22]Varelas X, Bouchie MP, Kukuruzinska MA: Protein N-glycosylation in oral cancer: dysregulated cellular networks among DPAGT1, E-cadherin adhesion and canonical Wnt signaling. Glycobiology 2014, 24:579-591.
  • [23]Park S, Yang J-S, Shin Y-E, Park J, Jang SK, Kim S: Protein localization as a principal feature of the etiology and comorbidity of genetic diseases. Mol Syst Biol 2011, 7:494.
  • [24]Barabási A-L, Gulbahce N, Loscalzo J: Network medicine: a network-based approach to human disease. Nat Rev Genet 2011, 12:56-68.
  • [25]Thomas A, Mahantshetty U, Kannan S, Deodhar K, Shrivastava SK, Kumar-Sinha C, et al.: Expression profiling of cervical cancers in Indian women at different stages to identify gene signatures during progression of the disease. Cancer Med 2013, 2:836-848.
  • [26]Zhou J, Zhao L-Q, Xiong M-M, Wang X-Q, Yang G-R, Qiu Z-L, et al.: Gene expression profiles at different stages of human esophageal squamous cell carcinoma. World J Gastroenterol 2003, 9:9-15.
  • [27]Folgueira MAAK, Brentani H, Katayama MLH, Patrão DFC, Carraro DM, Mourão Netto M, et al.: Gene expression profiling of clinical stages II and III breast cancer. Brazilian J Med Biol Res 2006, 39:1101-1113.
  • [28]Horvath S, Zhang B, Carlson M, Lu KV, Zhu S, Felciano RM, et al.: Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target. Proc Natl Acad Sci U S A 2006, 103:17402-17407.
  • [29]Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al.: NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res 2013, 41:D991-D995.
  • [30]Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al.: Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004, 5:R80.
  • [31]Suárez-Fariñas M, Pellegrino M, Wittkowski KM, Magnasco MO: Harshlight: a “corrective make-up” program for microarray chips. BMC Bioinformatics 2005, 6:294.
  • [32]McCall MN, Bolstad BM, Irizarry RA: Frozen robust multiarray analysis (fRMA). Biostatistics 2010, 11:242-253.
  • [33]Johnson WE, Li C, Rabinovic A: Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 2007, 8:118-127.
  • [34]Taminau J, Meganck S, Lazar C, Steenhoff D, Coletta A, Molter C, et al.: Unlocking the potential of publicly available microarray data using inSilicoDb and inSilicoMerging R/Bioconductor packages. BMC Bioinformatics 2012, 13:335.
  • [35]Daemen A, Brauer M: biosvd: Package for high-throughput data processing, outlier detection, noise removal and dynamic modeling. 2013.
  • [36]Smyth GK: Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004, 3:3.
  • [37]Langfelder P, Horvath S: WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 2008, 9:559.
  • [38]Langfelder P, Mischel PS, Horvath S: When is hub gene selection better than standard meta-analysis? PLoS One 2013., 8Article ID e61505
  • [39]Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al.: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003, 13:2498-2504.
  • [40]Gillespie CS: Fitting heavy tailed distributions: the poweRlaw package. 2014.
  • [41]Iyer S, Killingback T, Sundaram B, Wang Z: Attack robustness and centrality of complex networks. PLoS One 2013., 8Article ID e59613
  • [42]Valente TW, Coronges K, Lakon C, Costenbader E: How correlated are network centrality measures? Connections 2008, 28:16-26.
  • [43]Tarca AL, Kathri P, Draghici S: SPIA: Signaling Pathway Impact Analysis (SPIA) using combined evidence of pathway over-representation and unusual signaling perturbations. 2013.
  • [44]Sales G, Calura E, Cavalieri D, Romualdi C: graphite - a Bioconductor package to convert pathway topology to gene network. BMC Bioinformatics 2012, 13:20.
  • [45]Falcon S, Gentleman R: Using GOstats to test gene lists for GO term association. Bioinformatics 2007, 23:257-258.
  • [46]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al.: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000, 25:25-29.
  • [47]Supek F, Bošnjak M, Škunca N, Šmuc T: REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 2011., 6Article ID e21800
  • [48]Zou H, Hastie T: Regularization and variable selection via the elastic net. J R Stat Soc Ser B 2005, 67:301-320.
  • [49]Jed Wing MKC, Weston S, Williams A, Keefer C, Engelhardt A, Cooper T, Mayer Z, Kenkel B, the R Core Team, Benesty M, Lescarbeau R, Ziem A, Scrucca. L: caret: Classification and Regression Training. 2015.
  • [50]Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, et al.: pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 2011, 12:77.
  • [51]Stretch C, Khan S, Asgarian N, Eisner R, Vaisipour S, Damaraju S, et al.: Effects of sample size on differential gene expression, rank order and prediction accuracy of a gene signature. PLoS One 2013., 8Article ID e65380
  • [52]Lazar C, Meganck S, Taminau J, Steenhoff D, Coletta A, Molter C, et al.: Batch effect removal methods for microarray gene expression data integration: a survey. Brief Bioinform 2013, 14:469-490.
  • [53]Chen C, Grennan K, Badner J, Zhang D, Gershon E, Jin L, et al.: Removing batch effects in analysis of expression microarray data: an evaluation of six batch adjustment methods. PLoS One 2011., 6Article ID e17238
  • [54]Gagnon-Bartsch JA, Speed TP: Using control genes to correct for unwanted variation in microarray data. Biostatistics 2012, 13:539-552.
  • [55]Alter O, Brown PO, Botstein D: Singular value decomposition for genome-wide expression data processing and modeling. Proc Natl Acad Sci 2000, 97:10101-10106.
  • [56]Dalman MR, Deeter A, Nimishakavi G, Duan Z-H: Fold change and p-value cutoffs significantly alter microarray interpretations. BMC Bioinformatics 2012, 13(2):S11.
  • [57]Huggins CE, Domenighetti AA, Ritchie ME, Khalil N, Favaloro JM, Proietto J, et al.: Functional and metabolic remodelling in GLUT4-deficient hearts confers hyper-responsiveness to substrate intervention. J Mol Cell Cardiol 2008, 44:270-280.
  • [58]Raouf A, Zhao Y, To K, Stingl J, Delaney A, Barbara M, et al.: Transcriptome analysis of the normal human mammary cell commitment and differentiation process. Cell Stem Cell 2008, 3:109-118.
  • [59]Peart MJ, Smyth GK, van Laar RK, Bowtell DD, Richon VM, Marks PA, et al.: Identification and functional significance of genes regulated by structurally different histone deacetylase inhibitors. Proc Natl Acad Sci U S A 2005, 102:3697-3702.
  • [60]Langfelder P, Luo R, Oldham MC, Horvath S: Is my network module preserved and reproducible? PLoS Comput Biol 2011., 7Article ID e1001057
  • [61]Belge G, Meyer A, Klemke M, Burchardt K, Stern C, Wosniok W, et al.: Upregulation of HMGA2 in thyroid carcinomas: a novel molecular marker to distinguish between benign and malignant follicular neoplasias. Genes Chromosomes Cancer 2008, 47:56-63.
  • [62]Smith MW, Yue ZN, Geiss GK, Sadovnikova NY, Carter VS, Boix L, et al.: Identification of novel tumor markers in hepatitis C virus-associated hepatocellular carcinoma. Cancer Res 2003, 63:859-864.
  • [63]Yamashita T, Forgues M, Wang W, Kim JW, Ye Q, Jia H, et al.: EpCAM and alpha-fetoprotein expression defines novel prognostic subtypes of hepatocellular carcinoma. Cancer Res 2008, 68:1451-1461.
  • [64]Dalgin GS, Alexe G, Scanfeld D, Tamayo P, Mesirov JP, Ganesan S, et al.: Portraits of breast cancer progression. BMC Bioinformatics 2007, 8:291.
  • [65]Seugg Woo S, Kim HD, Ahn Y-Y, Jeong H: Response network emerging from simple perturbation. J Korean Phys Soc 2004, 44:628.
  • [66]Albert R, Jeong H, Barabasi A: Error and attack tolerance of complex networks. Nature 2000, 406:378-382.
  • [67]Carlson MRJ, Zhang B, Fang Z, Mischel PS, Horvath S, Nelson SF: Gene connectivity, function, and sequence conservation: predictions from modular yeast co-expression networks. BMC Genomics 2006, 7:40.
  • [68]Wang E, Lenferink A, O’Connor-McCourt M: Cancer systems biology: exploring cancer-associated genes on cellular networks. Cell Mol Life Sci 2007, 64:1752-1762.
  • [69]Forbes SA, Bhamra G, Bamford S, Dawson E, Kok C, Clements J, et al.: The Catalogue of Somatic Mutations in Cancer (COSMIC). Curr. Protoc. Hum, Genet; 2008.
  • [70]Zhao M, Sun J, Zhao Z: TSGene: a web resource for tumor suppressor genes. Nucleic Acids esearch 2013, 41:D970-D976.
  • [71]Tarca AL, Draghici S, Khatri P, Hassan SS, Mittal P, Kim J-S, et al.: A novel signaling pathway impact analysis. Bioinformatics 2009, 25:75-82.
  • [72]Stegh AH: Targeting the p53 signaling pathway in cancer therapy - the promises, challenges and perils. Expert Opin Ther Targets 2012, 16:67-83.
  • [73]Rowley H, Sherrington P, Helliwell TR, Kinsella A, Jones AS: p53 expression and p53 gene mutation in oral cancer and dysplasia. Otolaryngol Neck Surg 1998, 118:115-123.
  • [74]Zhang M, Liang L, Xu M, Qureshi AA, Han J: Pathway analysis for genome-wide association study of basal cell carcinoma of the skin. PLoS One 2011., 6Article ID e22760
  • [75]Leloup L, Wells A: Calpains as potential anti-cancer targets. Expert Opin Ther Targets 2011, 15:309-323.
  • [76]Glading A, Chang P, Lauffenburger DA, Wells A: Epidermal growth factor receptor activation of calpain is required for fibroblast motility and occurs via an ERK/MAP kinase signaling pathway. J Biol Chem 2000, 275:2390-2398.
  • [77]Lakshmikuttyamma A, Selvakumar P, Kanthan R, Kanthan SC, Sharma RK: Overexpression of m-calpain in human colorectal adenocarcinomas. Cancer Epidemiol Biomarkers Prev 2004, 13:1604-1609.
  • [78]Danen EHJ: Integrins: regulators of tissue function and cancer progression. Curr Pharm Des 2005, 11:881-891.
  • [79]Wilhelmsen K, Litjens SHM, Sonnenberg A: Multiple functions of the integrin α6β4 in epidermal homeostasis and tumorigenesis. Mol Cell Biol 2006, 26:2877-2886.
  • [80]Cress AE, Rabinovitz I, Zhu W, Nagle RB: The α6β1 and α6β4 integrins in human prostate cancer progression. Cancer Metastasis Rev 1995, 14:219-228.
  • [81]Ramsay AG, Marshall JF, Hart IR: Integrin trafficking and its role in cancer metastasis. Cancer Metastasis Rev 2007, 26:567-578.
  • [82]Kulakovskaya TV, Vagabov VM, Kulaev IS: Inorganic polyphosphate in industry, agriculture and medicine: modern state and outlook. Process Biochem 2012, 47:1-10.
  • [83]Beck GR, Knecht N: Osteopontin regulation by inorganic phosphate is ERK1/2-, protein kinase C-, and proteasome-dependent. J Biol Chem 2003, 278:41921-41929.
  • [84]Naviglio S, Spina A, Chiosi E, Fusco A, Illiano F, Pagano M, et al.: Inorganic phosphate inhibits growth of human osteosarcoma U2OS cells via adenylate cyclase/cAMP pathway. J Cell Biochem 2006, 98:1584-1596.
  • [85]Demirkhanyan L, Elustondo P, Pavlov E, Zakharian E: Role of polyphosphate in cancer cell proliferation. Biophys J 2014, 106:753a.
  • [86]Slattery ML: Vitamin D receptor gene (VDR) associations with cancer. Nutr Rev 2007, 65:S102-S104.
  • [87]Ingles SA, Ross RK, Yu MC, Irvine RA, La Pera G, Haile RW, et al.: Association of prostate cancer risk with genetic polymorphisms in vitamin D receptor and androgen receptor. J Natl Cancer Inst 1997, 89:166-170.
  • [88]Trabert B, Malone KE, Daling JR, Doody DR, Bernstein L, Ursin G, et al.: Vitamin D receptor polymorphisms and breast cancer risk in a large population-based case–control study of Caucasian and African-American women. Breast Cancer Res 2007, 9:R84.
  • [89]Lin C-C, Lin S-Y, Chung J-G, Lin J-P, Chen G-W, Kao S-T: Down-regulation of cyclin B1 and up-regulation of Wee1 by berberine promotes entry of leukemia cells into the G2/M-phase of the cell cycle. Anticancer Res 2006, 26:1097-1104.
  • [90]Chan K-S, Koh C-G, Li H-Y: Mitosis-targeted anti-cancer therapies: where they stand. Cell Death Dis 2012., 3Article ID e411
  • [91]Kojima A, Maeda H, Sugita Y, Tanaka S, Kameyama Y: Human papillomavirus type 38 infection in oral squamous cell carcinomas. Oral Oncol 2002, 38:591-596.
  • [92]Herrero R, Castellsagué X, Pawlita M, Lissowska J, Kee F, Balaram P, et al.: Human Papillomavirus and oral cancer: the international agency for research on cancer multicenter study. J Natl Cancer Inst 2003, 95:1772-1783.
  • [93]Wong DTW, Todd R, Tsuji T, Donoff RB: Molecular biology of human oral cancer. Crit Rev Oral Biol Med 1996, 7:319-328.
  • [94]Meyer-Hoffert U, Wingertszahn J, Wiedow O: Human leukocyte elastase induces keratinocyte proliferation by epidermal growth factor receptor activation. J Invest Dermatol 2004, 123:338-345.
  • [95]Batsakis JG: Salivary gland neoplasia: An outcome of modified morphogenesis and cytodifferentiation. Oral Surgery, Oral Med 1980, 49:229-232.
  • [96]Lohavanichbutr P, Méndez E, Holsinger FC, Rue TC, Zhang Y, Houck J, et al.: A 13-gene signature prognostic of HPV-negative OSCC: discovery and external validation. Clin Cancer Res 2013, 19:1197-1203.
  • [97]Choi JK, Yu U, Yoo OJ, Kim S: Differential coexpression analysis using microarray data and its application to human cancer. Bioinformatics 2005, 21:4348-4355.
  • [98]Chuang H-Y, Lee E, Liu Y-T, Lee D, Ideker T: Network-based classification of breast cancer metastasis. Mol Syst Biol 2007, 3:140.
  • [99]Kumari S, Nie J, Chen H-S, Ma H, Stewart R, Li X, et al.: Evaluation of gene association methods for coexpression network construction and biological knowledge discovery. PLoS One 2012., 7Article ID e50411
  • [100]Macneil LT, Walhout AJM: Gene regulatory networks and the role of robustness and stochasticity in the control of gene expression. Genome Res 2011, 21:645-657.
  • [101]Van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AAM, Voskuil DW, et al.: A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002, 347:1999-2009.
  • [102]Pawitan Y, Bjöhle J, Amler L, Borg A-L, Egyhazi S, Hall P, et al.: Gene expression profiling spares early breast cancer patients from adjuvant therapy: derived and validated in two population-based cohorts. Breast Cancer Res 2005, 7:R953-R964.
  • [103]Cho S, Kim H, Oh S, Kim K, Park T: Elastic-net regularization approaches for genome-wide association studies of rheumatoid arthritis. BMC Proc 2009, 3:S25.
  • [104]Osmanbeyoglu HU, Pelossof R, Bromberg J, Leslie CS: Linking signaling pathways to transcriptional programs in breast cancer. Genome Res 2014, 24:1869-1880.
  • [105]Gan CP, Zain RB, Abraham MT, Patel V, Gutkind JS, Cheong SC, et al.: Expression of GNA12 and its role in oral cancer. Oral Oncol 2011, 47:S114-S115.
  • [106]Cetindis M, Biegner T, Munz A, Teriete P, Reinert S, Grimm M. Glutaminolysis and carcinogenesis of oral squamous cell carcinoma. Eur Arch Oto-Rhino-Laryngology. 2015;1–9.
  • [107]Nguyen ST, Hasegawa S, Tsuda H, Tomioka H, Ushijima M, Noda M, et al.: Identification of a predictive gene expression signature of cervical lymph node metastasis in oral squamous cell carcinoma. Cancer Sci 2007, 98:740-746.
  • [108]Bitu CC, MF de Destro SS, Carrera M, da Silva SD, Graner E, Kowalski LP, et al.: HOXA1 is overexpressed in oral squamous cell carcinomas and its expression is correlated with poor prognosis. BMC Cancer 2012, 12:146.
  • [109]Shimizu S, Seki N, Sugimoto T, Horiguchi S, Tanzawa H, Hanazawa T, et al.: Identification of molecular targets in head and neck squamous cell carcinomas based on genome-wide gene expression profiling. Oncol Rep 2007, 18:1489-1497.
  • [110]Sethi S, Benninger MS, Lu M, Havard S, Worsham MJ: Noninvasive molecular detection of head and neck squamous cell carcinoma: an exploratory analysis. Diagnostic Mol Pathol 2009, 18:81-87.
  • [111]Saini V, Hose CD, Monks A, Nagashima K, Han B, Newton DL, et al.: Identification of CBX3 and ABCA5 as putative biomarkers for tumor stem cells in osteosarcoma. PLoS One 2012., 7Article ID e41401
  • [112]Zhang Z, Wang J, Shen B, Peng C, Zheng M: The ABCC4 gene is a promising target for pancreatic cancer therapy. Gene 2012, 491:194-199.
  • [113]Takanashi M, Oikawa K, Fujita K, Kudo M, Kinoshita M, Kuroda M: Heterochromatin protein 1gamma epigenetically regulates cell differentiation and exhibits potential as a therapeutic target for various types of cancers. Am J Pathol 2009, 174:309-316.
  • [114]Herbst RS: Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys 2004, 59:21-26.
  • [115]Sterenczak KA, Eckardt A, Kampmann A, Willenbrock S, Eberle N, Länger F, et al.: HMGA1 and HMGA2 expression and comparative analyses of HMGA2, Lin28 and let-7 miRNAs in oral squamous cell carcinoma. BMC Cancer 2014, 14:694.
  • [116]Kumar MS, Armenteros-Monterroso E, East P, Chakravorty P, Matthews N, Winslow MM, et al.: HMGA2 functions as a competing endogenous RNA to promote lung cancer progression. Nature 2014, 505:212-217.
  • [117]Petit AM, Rak J, Hung MC, Rockwell P, Goldstein N, Fendly B, et al.: Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of so. Am J Pathol 1997, 151:1523-1530.
  • [118]Laimer K, Spizzo G, Gastl G, Obrist P, Brunhuber T, Fong D, et al.: High EGFR expression predicts poor prognosis in patients with squamous cell carcinoma of the oral cavity and oropharynx: a TMA-based immunohistochemical analysis. Oral Oncol 2007, 43:193-198.
  • [119]Chang K-Y, Tsai S-Y, Chen S-H, Tsou H-H, Yen C-J, Liu K-J, et al.: Dissecting the EGFR-PI3K-AKT pathway in oral cancer highlights the role of the EGFR variant III and its clinical relevance. J Biomed Sci 2013, 20:43.
  • [120]Bernardes VF, Gleber-Netto FO, de Sousa SF, Rocha RM, de Aguiar MCF: EGFR status in oral squamous cell carcinoma: comparing immunohistochemistry. FISH and CISH detection in a case series study BMJ Open 2013., 3Article ID e002077
  • [121]Zhao Y, Butler EB, Tan M: Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis 2013., 4Article ID e532
  • [122]Li M, Cai Y, Zhao H, Xu Z, Sun Q, Luo M, et al. Overexpression of HMGB3 protein promotes cell proliferation, migration and is associated with poor prognosis in urinary bladder cancer patients. Tumour Biol. 2015;1–8.
  • [123]Schulze A, Harris AL: How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature 2012, 491:364-373.
  • [124]Elgamal OA, Park J-K, Gusev Y, Azevedo-Pouly ACP, Jiang J, Roopra A, et al.: Tumor suppressive function of mir-205 in breast cancer is linked to HMGB3 regulation. PLoS One 2013., 8Article ID e76402
  • [125]Tang H-R, Luo X-Q, Xu G, Wang Y, Feng Z-J, Xu H, et al.: High mobility group-box 3 overexpression is associated with poor prognosis of resected gastric adenocarcinoma. World J Gastroenterol 2012, 18:7319-7326.
  • [126]Jones RG, Thompson CB: Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev 2009, 23:537-548.
  • [127]Kalhan SC, Hanson RW: Resurgence of serine: an often neglected but indispensable amino acid. J Biol Chem 2012, 287:19786-19791.
  • [128]Pollari S, Käkönen S-M, Edgren H, Wolf M, Kohonen P, Sara H, et al.: Enhanced serine production by bone metastatic breast cancer cells stimulates osteoclastogenesis. Breast Cancer Res Treat 2011, 125:421-430.
  • [129]Snell K: Enzymes of serine metabolism in normal, developing and neoplastic rat tissues. Adv Enzyme Regul 1984, 22:325-400.
  • [130]Lund K, Merrill DK, Guynn RW: The reactions of the phosphorylated pathway of L-serine biosynthesis: thermodynamic relationships in rabbit liver in vivo. Arch Biochem Biophys 1985, 237:186-196.
  • [131]Li C, Shintani S, Terakado N, Nakashiro K, Hamakawa H: Infiltration of tumor-associated macrophages in human oral squamous cell carcinoma. Oncol Rep 2002, 9:1219-1223.
  • [132]Li W, He F: Monocyte to macrophage differentiation-associated (MMD) targeted by miR-140-5p regulates tumor growth in non-small cell lung cancer. Biochem Biophys Res Commun 2014, 450:844-850.
  • [133]Chen JJW, Lin Y-C, Yao P-L, Yuan A, Chen H-Y, Shun C-T, et al.: Tumor-associated macrophages: the double-edged sword in cancer progression. J Clin Oncol 2005, 23:953-964.
  • [134]Xiao F, Bai Y, Chen Z, Li Y, Luo L, Huang J, et al.: Downregulation of HOXA1 gene affects small cell lung cancer cell survival and chemoresistance under the regulation of miR-100. Eur J Cancer 2014, 50:1541-1554.
  • [135]Cicatiello L, Mutarelli M, Grober OMV, Paris O, Ferraro L, Ravo M, et al.: Estrogen receptor alpha controls a gene network in luminal-like breast cancer cells comprising multiple transcription factors and microRNAs. Am J Pathol 2010, 176:2113-2130.
  • [136]Iancu OD, Kawane S, Bottomly D, Searles R, Hitzemann R, McWeeney S: Utilizing RNA-Seq data for de novo coexpression network inference. Bioinformatics 2012, 28:1592-1597.
  • [137]Reis PP, Waldron L, Perez-Ordonez B, Pintilie M, Galloni NN, Xuan Y, et al.: A gene signature in histologically normal surgical margins is predictive of oral carcinoma recurrence. BMC Cancer 2011, 11:437.
  • [138]Chen C, Méndez E, Houck J, Fan W, Lohavanichbutr P, Doody D, et al.: Gene expression profiling identifies genes predictive of oral squamous cell carcinoma. Cancer Epidemiol Biomarkers Prev 2008, 17:2152-2162.
  • [139]Toruner GA, Ulger C, Alkan M, Galante AT, Rinaggio J, Wilk R, et al.: Association between gene expression profile and tumor invasion in oral squamous cell carcinoma. Cancer Genet Cytogenet 2004, 154:27-35.
  • [140]O’Donnell RK, Kupferman M, Wei SJ, Singhal S, Weber R, O’Malley B, et al.: Gene expression signature predicts lymphatic metastasis in squamous cell carcinoma of the oral cavity. Oncogene 2005, 24:1244-1251.
  • [141]Pyeon D, Newton MA, Lambert PF, den Boon JA, Sengupta S, Marsit CJ, et al.: Fundamental differences in cell cycle deregulation in human papillomavirus-positive and human papillomavirus-negative head/neck and cervical cancers. Cancer Res 2007, 67:4605-4619.
  文献评价指标  
  下载次数:48次 浏览次数:15次