| BMC Systems Biology | |
| Global insights into energetic and metabolic networks in Rhodobacter sphaeroides | |
| Timothy J Donohue1  Daniel R Noguera1  Saheed Imam1  | |
| [1] DOE Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, USA | |
| 关键词: Rhodobacter sphaeroides; Phenotype microarray; Metabolic modeling; Constraint-based analysis; Transhydrogenase; Photosynthesis; | |
| Others : 1142200 DOI : 10.1186/1752-0509-7-89 |
|
| received in 2013-05-14, accepted in 2013-09-10, 发布年份 2013 | |
PDF
|
|
【 摘 要 】
Background
Improving our understanding of processes at the core of cellular lifestyles can be aided by combining information from genetic analyses, high-throughput experiments and computational predictions.
Results
We combined data and predictions derived from phenotypic, physiological, genetic and computational analyses to dissect the metabolic and energetic networks of the facultative photosynthetic bacterium Rhodobacter sphaeroides. We focused our analysis on pathways crucial to the production and recycling of pyridine nucleotides during aerobic respiratory and anaerobic photosynthetic growth in the presence of an organic electron donor. In particular, we assessed the requirement for NADH/NADPH transhydrogenase enzyme, PntAB during respiratory and photosynthetic growth. Using high-throughput phenotype microarrays (PMs), we found that PntAB is essential for photosynthetic growth in the presence of many organic electron donors, particularly those predicted to require its activity to produce NADPH. Utilizing the genome-scale metabolic model iRsp1095, we predicted alternative routes of NADPH synthesis and used gene expression analyses to show that transcripts from a subset of the corresponding genes were conditionally increased in a ΔpntAB mutant. We then used a combination of metabolic flux predictions and mutational analysis to identify flux redistribution patterns utilized in the ΔpntAB mutant to compensate for the loss of this enzyme. Data generated from metabolic and phenotypic analyses of wild type and mutant cells were used to develop iRsp1140, an expanded genome-scale metabolic reconstruction for R. sphaeroides with improved ability to analyze and predict pathways associated with photosynthesis and other metabolic processes.
Conclusions
These analyses increased our understanding of key aspects of the photosynthetic lifestyle, highlighting the added importance of NADPH production under these conditions. It also led to a significant improvement in the predictive capabilities of a metabolic model for the different energetic lifestyles of a facultative organism.
【 授权许可】
2013 Imam et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150328003711932.pdf | 2762KB | ||
| Figure 7. | 46KB | Image | |
| Figure 6. | 21KB | Image | |
| Figure 5. | 50KB | Image | |
| Figure 4. | 97KB | Image | |
| Figure 3. | 41KB | Image | |
| Figure 2. | 83KB | Image | |
| Figure 1. | 64KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
【 参考文献 】
- [1]Cavill R, Kamburov A, Ellis JK, Athersuch TJ, Blagrove MS, Herwig R, Ebbels TM, Keun HC: Consensus-phenotype integration of transcriptomic and metabolomic data implies a role for metabolism in the chemosensitivity of tumour cells. PLoS Comput Biol 2011, 7(3):e1001113.
- [2]Hirai MY, Yano M, Goodenowe DB, Kanaya S, Kimura T, Awazuhara M, Arita M, Fujiwara T, Saito K: Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. Proc Natl Acad Sci USA 2004, 101(27):10205-10210.
- [3]Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J, Eng JK, Bumgarner R, Goodlett DR, Aebersold R, Hood L: Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 2001, 292(5518):929-934.
- [4]Joyce AR, Palsson BO: The model organism as a system: integrating 'omics' data sets. Nat Rev Mol Cell Biol 2006, 7(3):198-210.
- [5]Ratnakumar S, Hesketh A, Gkargkas K, Wilson M, Rash BM, Hayes A, Tunnacliffe A, Oliver SG: Phenomic and transcriptomic analyses reveal that autophagy plays a major role in desiccation tolerance in Saccharomyces cerevisiae. Mol Biosyst 2011, 7(1):139-149.
- [6]Oberhardt MA, Palsson BO, Papin JA: Applications of genome-scale metabolic reconstructions. Mol Syst Biol 2009, 5:320.
- [7]Atsumi S, Higashide W, Liao JC: Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol 2009, 27(12):1177-1180.
- [8]Gronenberg LS, Marcheschi RJ, Liao JC: Next generation biofuel engineering in prokaryotes. Curr Opin Chem Biol 2013, 17(3):462-471.
- [9]Jaschke PR, Saer RG, Noll S, Beatty JT: Modification of the genome of Rhodobacter sphaeroides and construction of synthetic operons. Methods Enzymol 2011, 497:519-538.
- [10]Tabita FR: The biochemistry and metabolic regulation of carbon metabolism and CO2-fixation in purple bacteria. In Anoxygenic Photosynthetic Bacteria. Edited by Blankenship RE, Madigan MT, Bauer CE, Blankenship RE, Madigan MT, Bauer CE. The Netherlands: Kluwer Academic Publishers; 1995:885-914.
- [11]Imam S, Yilmaz S, Sohmen U, Gorzalski AS, Reed JL, Noguera DR, Donohue TJ: iRsp1095: a genome-scale reconstruction of the Rhodobacter sphaeroides metabolic network. BMC Syst Biol 2011, 5:116. BioMed Central Full Text
- [12]Mackenzie C, Eraso JM, Choudhary M, Roh JH, Zeng X, Bruscella P, Puskas A, Kaplan S: Postgenomic adventures with Rhodobacter sphaeroides. Annu Rev Microbiol 2007, 61:283-307.
- [13]Yilmaz LS, Kontur WS, Sanders AP, Sohmen U, Donohue TJ, Noguera DR: Electron partitioning during light- and nutrient-powered hydrogen production by Rhodobacter sphaeroides. Bioenerg Res 2010, 1:55-66.
- [14]Kim E, Lee M, Kim M, Lee JK: Molecular hydrogen production by nitrogenase of Rhodobacter sphaeroides and by Fe-only hydrogenase of Rhodospirillum rubrum. Int J Hydrogen Energy 2008, 33(5):1516-1521.
- [15]Kontur WS, Ziegelhoffer EC, Spero MA, Imam S, Noguera DR, Donohue TJ: Pathways involved in reductant distribution during photobiological H(2) production by Rhodobacter sphaeroides. Appl Environ Microbiol 2011, 77(20):7425-7429.
- [16]Kien NB, Kong IS, Lee MG, Kim JK: Coenzyme Q10 production in a 150-l reactor by a mutant strain of Rhodobacter sphaeroides. J Ind Microbiol Biotechnol 2010, 37(5):521-529.
- [17]Khatipov E, Miyake M, Miyake J, Asada Y: Polyhydroxybutyrate accumulation and hydrogen evolution by Rhodobacter sphaeroides as a function of nitrogen availability. Biohydrogen 1999, III:157-161.
- [18]Sasaki K, Morikawa H, Kishibe T, Mikami A, Harada T, Ohta M: Practical removal of radioactivity from sediment mud in a swimming pool in Fukushima, Japan by immobilized photosynthetic bacteria. Biosci Biotechnol Biochem 2012, 76(4):859-862.
- [19]Connor MR, Atsumi S: Synthetic biology guides biofuel production. J Biomed Biotechnol 2010. doi:10.1155/2010/541698.
- [20]Wahlund TM, Conway T, Tabita FR: Bioconversion of CO2 to ethanol and other compounds. American Chemical Society Division of Fuel Chemistry 1996, 41:1403-1405.
- [21]Bochner BR: New technologies to assess genotype-phenotype relationships. Nat Rev Genet 2003, 4(4):309-314.
- [22]Bochner BR, Gadzinski P, Panomitros E: Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. Genome Res 2001, 11(7):1246-1255.
- [23]Borglin S, Joyner D, DeAngelis KM, Khudyakov J, D'Haeseleer P, Joachimiak MP, Hazen T: Application of phenotypic microarrays to environmental microbiology. Curr Opin Biotechnol 2012, 23(1):41-48.
- [24]Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BO: A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 2007, 3:121.
- [25]Oh YK, Palsson BO, Park SM, Schilling CH, Mahadevan R: Genome-scale reconstruction of metabolic network in Bacillus subtilis based on high-throughput phenotyping and gene essentiality data. J Biol Chem 2007, 282(39):28791-28799.
- [26]Bragg PD: Site-directed mutagenesis of the proton-pumping pyridine nucleotide transhydrogenase of Escherichia coli. Biochim Biophys Acta 1998, 1365(1–2):98-104.
- [27]Bragg PD, Davies PL, Hou C: Function of energy-dependent transhydrogenase in Escherichia coli. Biochem Biophys Res Commun 1972, 47(5):1248-1255.
- [28]Nelson DL, Cox MM: Lehninger: Principles of Biochemistry. New York: W. H. Freeman and Company; 2005.
- [29]Sauer U, Canonaco F, Heri S, Perrenoud A, Fischer E: The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J Biol Chem 2004, 279(8):6613-6619.
- [30]Lee HC, Kim JS, Jang W, Kim SY: High NADPH/NADP+ ratio improves thymidine production by a metabolically engineered Escherichia coli strain. J Biotechnol 2010, 149(1–2):24-32.
- [31]Hickman JW, Barber RD, Skaar EP, Donohue TJ: Link between the membrane-bound pyridine nucleotide transhydrogenase and glutathione-dependent processes in Rhodobacter sphaeroides. J Bacteriol 2002, 184(2):400-409.
- [32]Yang Z, Savchenko A, Yakunin A, Zhang R, Edwards A, Arrowsmith C, Tong L: Aspartate dehydrogenase, a novel enzyme identified from structural and functional studies of TM1643. J Biol Chem 2003, 278(10):8804-8808.
- [33]Yoneda K, Kawakami R, Tagashira Y, Sakuraba H, Goda S, Ohshima T: The first archaeal L-aspartate dehydrogenase from the hyperthermophile Archaeoglobus fulgidus: gene cloning and enzymological characterization. Biochim Biophys Acta 2006, 1764(6):1087-1093.
- [34]Fuhrer T, Fischer E, Sauer U: Experimental identification and quantification of glucose metabolism in seven bacterial species. J Bacteriol 2005, 187(5):1581-1590.
- [35]Kiley PJ, Kaplan S: Molecular genetics of photosynthetic membrane biosynthesis in Rhodobacter sphaeroides. Microbiol Rev 1988, 52(1):50-69.
- [36]Schellenberger J, Park JO, Conrad TM, Palsson BO: BiGG: a Biochemical Genetic and Genomic knowledgebase of large scale metabolic reconstructions. BMC Bioinformatics 2010, 11:213. BioMed Central Full Text
- [37]Ames GF: Bacterial periplasmic transport systems: structure, mechanism, and evolution. Annu Rev Biochem 1986, 55:397-425.
- [38]Higgins CF: ABC transporters: physiology, structure and mechanism–an overview. Res Microbiol 2001, 152(3–4):205-210.
- [39]Linton KJ, Higgins CF: The Escherichia coli ATP-binding cassette (ABC) proteins. Mol Microbiol 1998, 28(1):5-13.
- [40]Rees DC, Johnson E, Lewinson O: ABC transporters: the power to change. Nat Rev Mol Cell Biol 2009, 10(3):218-227.
- [41]Yoon SH, Han MJ, Jeong H, Lee CH, Xia XX, Lee DH, Shim JH, Lee SY, Oh TK, Kim JF: Comparative multi-omics systems analysis of Escherichia coli strains B and K-12. Genome Biol 2012, 13(5):R37. BioMed Central Full Text
- [42]Barua D, Kim J, Reed JL: An automated phenotype-driven approach (GeneForce) for refining metabolic and regulatory models. PLoS Comput Biol 2010, 6(10):e1000970.
- [43]Orth JD, Conrad TM, Na J, Lerman JA, Nam H, Feist AM, Palsson BO: A comprehensive genome-scale reconstruction of Escherichia coli metabolism–2011. Mol Syst Biol 2011, 7:535.
- [44]Zomorrodi AR, Maranas CD: Improving the iMM904 S. cerevisiae metabolic model using essentiality and synthetic lethality data. BMC Syst Biol 2010, 4:178. BioMed Central Full Text
- [45]Sistrom WR: A requirement for sodium in the growth of Rhodopseudomonas spheroides. J Gen Microbiol 1960, 22:778-785.
- [46]Borglin S, Joyner D, Jacobsen J, Mukhopadhyay A, Hazen TC: Overcoming the anaerobic hurdle in phenotypic microarrays: generation and visualization of growth curve data for Desulfovibrio vulgaris Hildenborough. J Microbiol Methods 2009, 76(2):159-168.
- [47]Reasoner DJ, Geldreich EE: A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 1985, 49(1):1-7.
- [48]Schafer A, Tauch A, Jager W, Kalinowski J, Thierbach G, Puhler A: Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 1994, 145(1):69-73.
- [49]Tavano CL, Podevels AM, Donohue TJ: Identification of genes required for recycling reducing power during photosynthetic growth. J Bacteriol 2005, 187(15):5249-5258.
- [50]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25(4):402-408.
- [51]Varma A, Palsson BO: Metabolic flux balancing: basic concepts, scientific and practical use. Nat Biotechnol 1994, 12:994-998.
- [52]Mahadevan R, Schilling CH: The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng 2003, 5(4):264-276.
- [53]Lee S, Phalakornkule C, Domach MM, Grossmann IE: Recursive MILP model for finding all the alternate optima in LP models for metabolic networks. Computers & Chemical Engineering 2000, 24(2–7):711-716.
- [54]Reed JL, Palsson BO: Genome-scale in silico models of E. coli have multiple equivalent phenotypic states: assessment of correlated reaction subsets that comprise network states. Genome Res 2004, 14(9):1797-1805.
- [55]Colijn C, Brandes A, Zucker J, Lun DS, Weiner B, Farhat MR, Cheng TY, Moody DB, Murray M, Galagan JE: Interpreting expression data with metabolic flux models: predicting Mycobacterium tuberculosis mycolic acid production. PLoS Comput Biol 2009, 5(8):e1000489.
- [56]Kanehisa M, Goto S, Kawashima S, Nakaya A: The KEGG databases at GenomeNet. Nucleic Acids Res 2002, 30(1):42-46.
- [57]Scheer M, Grote A, Chang A, Schomburg I, Munaretto C, Rother M, Sohngen C, Stelzer M, Thiele J, Schomburg D: BRENDA, the enzyme information system in 2011. Nucleic Acids Res 2011, 39(Database issue):D670-D676.
- [58]Schomburg I, Chang A, Schomburg D: BRENDA, enzyme data and metabolic information. Nucleic Acids Res 2002, 30(1):47-49.
- [59]Alber BE: Biotechnological potential of the ethylmalonyl-CoA pathway. Appl Microbiol Biotechnol 2011, 89(1):17-25.
PDF