期刊论文详细信息
BMC Cancer
Molecular characterization of exosome-like vesicles from breast cancer cells
Stefan Kruger4  Zakaria Y Abd Elmageed3  David H Hawke2  Philipp M Wörner4  David A Jansen1  Asim B Abdel-Mageed3  Eckhard U Alt5  Reza Izadpanah1 
[1] Department of Surgery, Tulane University Health Sciences Center, 1430 Tulane Avenue, SL-48, Room 9520, New Orleans, LA 70112, USA
[2] Department of Molecular Pathology, University of Texas M.D. Anderson Cancer Center, 1430 Tulane Avenue, SL-48, Room 9520, New Orleans, LA 70112, USA
[3] Department of Urology, Tulane University Health Sciences Center, 1430 Tulane Avenue, SL-48, Room 9520, New Orleans, LA 70112, USA
[4] Applied Stem Cell Laboratory, Heart and Vascular Institute, Department of Medicine, Tulane University Health Sciences Center, 1430 Tulane Avenue, SL-48, Room 9520, New Orleans, LA 70112, USA
[5] Isar Medical Center, Department of Medicine, Interdisciplinary Stem Cell Laboratory, Munich, Germany
关键词: microRNA;    Liquid chromatography-mass spectrometry (LC-MS/MS);    Exosome;    Extracellular vesicles;    Breast cancer;   
Others  :  859112
DOI  :  10.1186/1471-2407-14-44
 received in 2013-09-23, accepted in 2014-01-09,  发布年份 2014
PDF
【 摘 要 】

Background

Membrane vesicles released by neoplastic cells into extracellular medium contain potential of carrying arrays of oncogenic molecules including proteins and microRNAs (miRNA). Extracellular (exosome-like) vesicles play a major role in cell-to-cell communication. Thus, the characterization of proteins and miRNAs of exosome-like vesicles is imperative in clarifying intercellular signaling as well as identifying disease markers.

Methods

Exosome-like vesicles were isolated using gradient centrifugation from MCF-7 and MDA-MB 231 cultures. Proteomic profiling of vesicles using liquid chromatography-mass spectrometry (LC-MS/MS) revealed different protein profiles of exosome-like vesicles derived from MCF-7 cells (MCF-Exo) than those from MDA-MB 231 cells (MDA-Exo).

Results

The protein database search has identified 88 proteins in MDA-Exo and 59 proteins from MCF-Exo. Analysis showed that among all, 27 proteins were common between the two exosome-like vesicle types. Additionally, MDA-Exo contains a higher amount of matrix-metalloproteinases, which might be linked to the enhanced metastatic property of MDA-MB 231 cells. In addition, microarray analysis identified several oncogenic miRNA between the two types vesicles.

Conclusions

Identification of the oncogenic factors in exosome-like vesicles is important since such vesicles could convey signals to non-malignant cells and could have an implication in tumor progression and metastasis.

【 授权许可】

   
2014 Kruger et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140724074908304.pdf 1567KB PDF download
17KB Image download
81KB Image download
51KB Image download
62KB Image download
【 图 表 】

【 参考文献 】
  • [1]Simpson RJ, Lim JW, Moritz RL, Mathivanan S: Exosomes: proteomic insights and diagnostic potential. Expert Rev Proteomics 2009, 6(3):267-283.
  • [2]Bobrie A, Colombo M, Raposo G, Thery C: Exosome secretion: molecular mechanisms and roles in immune responses. Traffic 2011, 12(12):1659-1668.
  • [3]Keller S, Sanderson MP, Stoeck A, Altevogt P: Exosomes: from biogenesis and secretion to biological function. Immunol Lett 2006, 107(2):102-108.
  • [4]Admyre C, Johansson SM, Qazi KR, Filen JJ, Lahesmaa R, Norman M, Neve EP, Scheynius A, Gabrielsson S: Exosomes with immune modulatory features are present in human breast milk. J Immunol 2007, 179(3):1969-1978.
  • [5]Gonzales PA, Pisitkun T, Hoffert JD, Tchapyjnikov D, Star RA, Kleta R, Wang NS, Knepper MA: Large-scale proteomics and phosphoproteomics of urinary exosomes. J Am Soc Nephrol 2009, 20(2):363-379.
  • [6]Gonzalez-Begne M, Lu B, Han X, Hagen FK, Hand AR, Melvin JE, Yates JR: Proteomic analysis of human parotid gland exosomes by multidimensional protein identification technology (MudPIT). J Proteome Res 2009, 8(3):1304-1314.
  • [7]Poliakov A, Spilman M, Dokland T, Amling CL, Mobley JA: Structural heterogeneity and protein composition of exosome-like vesicles (prostasomes) in human semen. Prostate 2009, 69(2):159-167.
  • [8]Rabinowits G, Gercel-Taylor C, Day JM, Taylor DD, Kloecker GH: Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer 2009, 10(1):42-46.
  • [9]Skriner K, Adolph K, Jungblut PR, Burmester GR: Association of citrullinated proteins with synovial exosomes. Arthritis Rheum 2006, 54(12):3809-3814.
  • [10]Mathivanan S, Ji H, Simpson RJ: Exosomes: extracellular organelles important in intercellular communication. J Proteomics 2010, 73(10):1907-1920.
  • [11]Simpson RJ, Jensen SS, Lim JW: Proteomic profiling of exosomes: current perspectives. Proteomics 2008, 8(19):4083-4099.
  • [12]Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007, 9(6):654-659.
  • [13]Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A, Rak J: Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 2008, 10(5):619-624.
  • [14]Skog J, Wurdinger T, Van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT Jr, Carter BS, Krichevsky AM, Breakefield XO: Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 2008, 10(12):1470-1476.
  • [15]Mattiske S, Suetani RJ, Neilsen PM, Callen DF: The oncogenic role of miR-155 in breast cancer. Cancer Epidemiol Biomarkers Prev 2012, 15(8):1236-1243.
  • [16]Dolo V, Ginestra A, Cassara D, Violini S, Lucania G, Torrisi MR, Nagase H, Canevari S, Pavan A, Vittorelli ML: Selective localization of matrix metalloproteinase 9, beta1 integrins, and human lymphocyte antigen class I molecules on membrane vesicles shed by 8701-BC breast carcinoma cells. Cancer Res 1998, 58(19):4468-4474.
  • [17]Palazzolo G, Albanese NN GDIC, Gygax D, Vittorelli ML, Pucci-Minafra I: Proteomic analysis of exosome-like vesicles derived from breast cancer cells. Anticancer Res 2012, 32(3):847-860.
  • [18]Ginestra A, La Placa MD, Saladino F, Cassara D, Nagase H, Vittorelli ML: The amount and proteolytic content of vesicles shed by human cancer cell lines correlates with their in vitro invasiveness. Anticancer Res 1998, 18(5A):3433-3437.
  • [19]Dolo V, D’Ascenzo S, Violini S, Pompucci L, Festuccia C, Ginestra A, Vittorelli ML, Canevari S, Pavan A: Matrix-degrading proteinases are shed in membrane vesicles by ovarian cancer cells in vivo and in vitro. Clin Exp Metastasis 1999, 17(2):131-140.
  • [20]Matsumoto K, Morisaki T, Kuroki H, Kubo M, Onishi H, Nakamura K, Nakahara C, Kuga H, Baba E, Nakamura M, et al.: Exosomes secreted from monocyte-derived dendritic cells support in vitro naive CD4+ T cell survival through NF-(kappa) B activation. Cell Immunol 2004, 231(1–2):20-29.
  • [21]Fleige S, Pfaffl MW: RNA integrity and the effect on the real-time qRT-PCR performance. Mol Aspects Med 2006, 27(2–3):126-139.
  • [22]Bissels U, Wild S, Tomiuk S, Holste A, Hafner M, Tuschl T, Bosio A: Absolute quantification of microRNAs by using a universal reference. RNA 2009, 15(12):2375-2384.
  • [23]Chiang HR, Schoenfeld LW, Ruby JG, Auyeung VC, Spies N, Baek D, Johnston WK, Russ C, Luo S, Babiarz JE, et al.: Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Dev 2010, 24(10):992-1009.
  • [24]Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, et al.: TM4: a free, open-source system for microarray data management and analysis. Biotechniques 2003, 34(2):374-378.
  • [25]Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 1998, 95(25):14863-14868.
  • [26]Lacroix M, Leclercq G: Relevance of breast cancer cell lines as models for breast tumours: an update. Breast Cancer Res Treat 2004, 83(3):249-289.
  • [27]Baran J, Baj-Krzyworzeka M, Weglarczyk K, Szatanek R, Zembala M, Barbasz J, Czupryna A, Szczepanik A: Circulating tumour-derived microvesicles in plasma of gastric cancer patients. Cancer Immunol Immunother 2010, 59(6):841-850.
  • [28]Friel AM, Corcoran C, Crown J, O’Driscoll L: Relevance of circulating tumor cells, extracellular nucleic acids, and exosomes in breast cancer. Breast Cancer Res Treat 2010, 123(3):613-625.
  • [29]Staubach S, Razawi H, Hanisch FG: Proteomics of MUC1-containing lipid rafts from plasma membranes and exosomes of human breast carcinoma cells MCF-7. Proteomics 2009, 9(10):2820-2835.
  • [30]Pigati L, Yaddanapudi SC, Iyengar R, Kim DJ, Hearn SA, Danforth D, Hastings ML, Duelli DM: Selective release of microRNA species from normal and malignant mammary epithelial cells. PLoS One 2010, 5(10):e13515.
  • [31]Tryndyak VP, Kovalchuk O, Pogribny IP: Loss of DNA methylation and histone H4 lysine 20 trimethylation in human breast cancer cells is associated with aberrant expression of DNA methyltransferase 1, Suv4-20 h2 histone methyltransferase and methyl-binding proteins. Cancer Biol Ther 2006, 5(1):65-70.
  • [32]Coticchia CM, Revankar CM, Deb TB, Dickson RB, Johnson MD: Calmodulin modulates Akt activity in human breast cancer cell lines. Breast Cancer Res Treat 2009, 115(3):545-560.
  • [33]Liu L, Nie J, Chen L, Dong G, Du X, Wu X, Tang Y, Han W: The oncogenic role of microRNA-130a/301a/454 in human colorectal cancer via targeting Smad4 expression. PLoS One 2013, 8(2):e55532.
  • [34]Wang CH, Lee DY, Deng Z, Jeyapalan Z, Lee SC, Kahai S, Lu WY, Zhang Y, Yang BB: MicroRNA miR-328 regulates zonation morphogenesis by targeting CD44 expression. PLoS One 2008, 3(6):e2420.
  • [35]Shi W, Gerster K, Alajez NM, Tsang J, Waldron L, Pintilie M, Hui AB, Sykes J, P’ng C, Miller N, et al.: MicroRNA-301 mediates proliferation and invasion in human breast cancer. Cancer Res 2011, 71(8):2926-2937.
  • [36]Peurala H, Greco D, Heikkinen T, Kaur S, Bartkova J, Jamshidi M, Aittomaki K, Heikkila P, Bartek J, Blomqvist C, et al.: MiR-34a expression has an effect for lower risk of metastasis and associates with expression patterns predicting clinical outcome in breast cancer. PLoS One 2011, 6(11):e26122.
  • [37]Smith AL, Iwanaga R, Drasin DJ, Micalizzi DS, Vartuli RL, Tan AC, Ford HL: The miR-106b-25 cluster targets Smad7, activates TGF-beta signaling, and induces EMT and tumor initiating cell characteristics downstream of Six1 in human breast cancer. Oncogene 2012, 31(50):5162-5171.
  • [38]Heneghan HM, Miller N, Lowery AJ, Sweeney KJ, Newell J, Kerin MJ: Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. Ann Surg 2010, 251(3):499-505.
  文献评价指标  
  下载次数:15次 浏览次数:11次