期刊论文详细信息
BMC Microbiology
Species-specific viability analysis of Pseudomonas aeruginosa, Burkholderia cepacia and Staphylococcus aureus in mixed culture by flow cytometry
Udo Reichl2  Mandy Ackermann1  Marc Rüger1 
[1] Chair of Bioprocess Engineering, Otto von Guericke University, Magdeburg, Germany;Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
关键词: Interspecies effects;    Staphylococcus aureus;    Burkholderia cepacia;    Pseudomonas aeruginosa;    Cystic fibrosis;    T-RFLP;    Flow cytometry;    Mixed communities;    Viability analysis;   
Others  :  1141740
DOI  :  10.1186/1471-2180-14-56
 received in 2013-04-30, accepted in 2014-02-25,  发布年份 2014
PDF
【 摘 要 】

Background

Bacterial species coexist commonly in mixed communities, for instance those occurring in microbial infections of humans. Interspecies effects contribute to alterations in composition of communities with respect to species and thus, to the course and severity of infection. Therefore, knowledge concerning growth and viability of single species in medically-relevant mixed communities is of high interest to resolve complexity of interspecies dynamics and to support development of treatment strategies. In this study, a flow cytometric method was established to assess the species-specific viability in defined three-species mixed cultures. The method enables the characterization of viability of Pseudomonas aeruginosa, Burkholderia cepacia and Staphylococcus aureus, which are relevant to lung infections of Cystic Fibrosis (CF) patients. The method combines fluorescence detection by antibody and lectin labeling with viability fluorescence staining using SYBR®Green I and propidium iodide. In addition, species-specific cell enumeration analysis using quantitative terminal restriction fragment length polymorphisms (qT-RFLP) was used to monitor the growth dynamics. Finally, to investigate the impact of substrate availability on growth and viability, concentrations of main substrates and metabolites released were determined.

Results

For each species, the time course of growth and viability during mixed culture cultivations was obtained by using qT-RFLP analysis in combination with flow cytometry. Comparison between mixed and pure cultures revealed for every species differences in growth properties, e.g. enhanced growth of P. aeruginosa in mixed culture. Differences were also observed for B. cepacia and S. aureus in the time course of viability, e.g. an early and drastic reduction of viability of S. aureus in mixed culture. Overall, P. aeruginosa clearly dominated the mixed culture with regard to obtained cell concentrations.

Conclusions

In combination with qT-RFLP analysis, the methods enabled monitoring of species-specific cell concentrations and viability during co-cultivation of theses strains. Experimental findings suggest that the predominance of P. aeruginosa over B. cepacia and S. aureus in mixed culture under the chosen cultivation conditions is promoted by more efficient substrate consumption of P. aeruginosa, and antagonistic interspecies effects induced by P. aeruginosa.

【 授权许可】

   
2014 Rüger et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150327123948518.pdf 2762KB PDF download
Figure 9. 53KB Image download
Figure 8. 81KB Image download
Figure 7. 68KB Image download
Figure 6. 45KB Image download
Figure 5. 98KB Image download
Figure 4. 38KB Image download
Figure 3. 44KB Image download
Figure 2. 71KB Image download
Figure 1. 36KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Hullar MAJ, Kaplan LA, Stahl DA: Recurring seasonal dynamics of microbial communities in stream habitats. Appl Environ Microbiol 2006, 72(1):713-722.
  • [2]Katsivela E, Moore E, Maroukli D, Strömpl C, Pieper D, Kalogerakis N: Bacterial community dynamics during in-situ bioremediation of petroleum waste sludge in landfarming sites. Biodegradation 2005, 16(2):169-180.
  • [3]Kleinsteuber S, Schleinitz KM, Breitfeld J, Harms H, Richnow HH, Vogt C: Molecular characterization of bacterial communities mineralizing benzene under sulfate-reducing conditions. FEMS Microbiol Ecol 2008, 66(1):143-157.
  • [4]Liu WT, Marsh TL, Cheng H, Forney LJ: Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 1997, 63(11):4516-4522.
  • [5]Rogers GB, Hart CA, Mason JR, Hughes M, Walshaw MJ, Bruce KD: Bacterial diversity in cases of lung infection in cystic fibrosis patients: 16S ribosomal DNA (rDNA) length heterogeneity PCR and 16S rDNA terminal restriction fragment length polymorphism profiling. J Clin Microbiol 2003, 41(8):3548-3558.
  • [6]Thies FL, König W, König B: Rapid characterization of the normal and disturbed vaginal microbiota by application of 16S rRNA gene terminal RFLP fingerprinting. J Med Microbiol 2007, 56(6):755-761.
  • [7]Trotha R, Reichl U, Thies FL, Sperling D, König W, König B: Adaption of a fragment analysis technique to an automated high-throughput multicapillary electrophoresis device for the precise qualitative and quantitative characterization of microbial communities. Electrophoresis 2002, 23(7–8):1070-1079.
  • [8]Schmidt JK, König B, Reichl U: Characterization of a three bacteria mixed culture in a chemostat: evaluation and application of a quantitative terminal-restriction fragment length polymorphism (T-RFLP) analysis for absolute and species specific cell enumeration. Biotechnol Bioeng 2007, 96(4):738-756.
  • [9]Schmidt JK, Riedele C, Regestein L, Rausenberger J, Reichl U: A novel concept combining experimental and mathematical analysis for the identification of unknown interspecies effects in a mixed culture. Biotechnol Bioeng 2011, 108(8):1900-1911.
  • [10]Riedele C, Reichl U: Interspecies effects in a ceftazidime-treated mixed culture of Pseudomonas aeruginosa, Burkholderia cepacia and Staphylococcus aureus: analysis at the single-species level. J Antimicrob Chemother 2011, 66(1):138-145.
  • [11]Rogers GB, Stressmann FA, Koller G, Daniels T, Carroll MP, Bruce KD: Assessing the diagnostic importance of nonviable bacterial cells in respiratory infections. Diagn Microbiol Infect Dis 2008, 62(2):133-141.
  • [12]Nocker A, Sossa-Fernandez P, Burr MD, Camper AK: Use of propidium monoazide for live/dead distinction in microbial ecology. Appl Environ Microbiol 2007, 73(16):5111-5117.
  • [13]Sträuber H, Müller S: Viability states of bacteria—specific mechanisms of selected probes. Cytometry A 2010, 77A(7):623-634.
  • [14]Fittipaldi M, Nocker A, Codony F: Progress in understanding preferential detection of live cells using viability dyes in combination with DNA amplification. J Microbiol Methods 2012, 91(2):276-289.
  • [15]Hammes F, Berney M, Egli T: Cultivation-independent assessment of bacterial viability. In High Resolution Microbial Single Cell Analytics. Edited by Müller S, Bley T. Heidelberg, Berlin: Springer; 2011:123-150. [Scheper T (Series Editor): Advances in biochemical engineering/biotechnology, volume 124.]
  • [16]Gregori G, Citterio S, Ghiani A, Labra M, Sgorbati S, Brown S, Denis M: Resolution of viable and membrane-compromised bacteria in freshwater and marine waters based on analytical flow cytometry and nucleic acid double staining. Appl Environ Microbiol 2001, 67(10):4662-4670.
  • [17]Alonso-Sáez L, Gasol JM, Lefort T, Hofer J, Sommaruga R: Effect of natural sunlight on bacterial activity and differential sensitivity of natural bacterioplankton groups in northwestern mediterranean coastal waters. Appl Environ Microbiol 2006, 72(9):5806-5813.
  • [18]Berney M, Hammes F, Bosshard F, Weilenmann H-U, Egli T: Assessment and interpretation of bacterial viability by using the LIVE/DEAD BacLight Kit in combination with flow cytometry. Appl Environ Microbiol 2007, 73(10):3283-3290.
  • [19]Bensch G, Rüger M, Wassermann M, Weinholz S, Reichl U, Cordes C: Flow cytometric viability assessment of lactic acid bacteria starter cultures produced by fluidized bed drying. Appl Microbiol Biotechnol 2014. DOI 10.1007/s00253-014-5592-z
  • [20]Falcioni T, Papa S, Gasol JM: Evaluating the flow-cytometric nucleic acid double-staining protocol in realistic situations of planktonic bacterial death. Appl Environ Microbiol 2008, 74(6):1767-1779.
  • [21]Foladori P, Bruni L, Tamburini S, Ziglio G: Direct quantification of bacterial biomass in influent, effluent and activated sludge of wastewater treatment plants by using flow cytometry. Water Res 2010, 44(13):3807-3818.
  • [22]Johnson DR, Czechowska K, Chèvre N, Van Der Meer JR: Toxicity of triclosan, penconazole and metalaxyl on Caulobacter crescentus and a freshwater microbial community as assessed by flow cytometry. Environ Microbiol 2009, 11(7):1682-1691.
  • [23]Ziglio G, Andreottola G, Barbesti S, Boschetti G, Bruni L, Foladori P, Villa R: Assessment of activated sludge viability with flow cytometry. Water Res 2002, 36(2):460-468.
  • [24]Shapiro HM: Practical Flow Cytometry. 4th edition. New York: Wiley-Liss; 2003:306-307.
  • [25]Zipper H, Brunner H, Bernhagen J, Vitzthum F: Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications. Nucleic Acids Res 2004, 32(12):e103-e103.
  • [26]Rüger M, Bensch G, Tüngler R, Reichl U: A flow cytometric method for viability assessment of Staphylococcus aureus and Burkholderia cepacia in mixed culture. Cytometry A 2012, 81A(12):1055-1066.
  • [27]Müller S, Nebe-von-Caron G: Functional single-cell analyses: flow cytometry and cell sorting of microbial populations and communities. FEMS Microbiol Rev 2010, 34(4):554-587.
  • [28]Riedele C, Reichl U: Time-kill studies with a ceftazidime-treated mixed culture consisting of Pseudomonas aeruginosa, Burkholderia cepacia and Staphylococcus aureus. Eng Life Sci 2012, 12(2):188-197.
  • [29]Holm C, Jespersen L: A flow-cytometric gram-staining technique for milk-associated bacteria. Appl Environ Microbiol 2003, 69(5):2857-2863.
  • [30]Gensberger ET, Sessitsch A, Kostić T: Propidium monoazide–quantitative polymerase chain reaction for viable Escherichia coli and Pseudomonas aeruginosa detection from abundant background microflora. Anal Biochem 2013, 441(1):69-72.
  • [31]Løvdal T, Hovda MB, Björkblom B, Møller SG: Propidium monoazide combined with real-time quantitative PCR underestimates heat-killed Listeria innocua. J Microbiol Methods 2011, 85(2):164-169.
  • [32]Pan Y, Breidt F: Enumeration of viable Listeria monocytogenes cells by real-time PCR with propidium monoazide and ethidium monoazide in the presence of dead cells. Appl Environ Microbiol 2007, 73(24):8028-8031.
  • [33]Yáñez MA, Nocker A, Soria-Soria E, Múrtula R, Martínez L, Catalán V: Quantification of viable Legionella pneumophila cells using propidium monoazide combined with quantitative PCR. J Microbiol Methods 2011, 85(2):124-130.
  • [34]Nebe-von-Caron G, Badley RA: Viability assessment of bacteria in mixed populations using flow cytometry. J Microsc 1995, 179:55-66.
  • [35]Barbesti S, Citterio S, Labra M, Baroni MD, Neri MG, Sgorbati S: Two and three-color fluorescence flow cytometric analysis of immunoidentified viable bacteria. Cytometry 2000, 40(3):214-218.
  • [36]Van Dilla MA, Langlois RG, Pinkel D, Yajko D, Hadley WK: Bacterial characterization by flow cytometry. Science 1983, 220(4597):620-622.
  • [37]Debray H, Decout D, Strecker G, Spik G, Montreuil J: Specificity of twelve lectins towards oligosaccharides and glycopeptides related to N-glycosylproteins. Eur J Biochem 1981, 117(1):41-51.
  • [38]Sizemore RK, Caldwell JJ, Kendrick AS: Alternate gram-staining technique using a fluorescent lectin. Eur J Biochem 1990, 56(7):2245-2247.
  • [39]Forsgren A, Sjöquist J: “Protein a” from S. aureus: I. Pseudo-immune reaction with human γ-globulin. J Immunol 1966, 97(6):822-827.
  • [40]Inganäs M, Johansson SGO, Bennich HH: Interaction of human polyclonal IgE and IgG from different species with protein a from Staphylococcus aureus: demonstration of protein-a-reactive sites located in the Fab2 fragment of human IgG. Scand J Immunol 1980, 12(1):23-31.
  • [41]Ljungberg UK, Jansson B, Niss U, Nilsson R, Sandberg BEB, Nilsson B: The interaction between different domains of staphylococcal protein a and human polyclonal IgG, IgA, IgM and F (ab’)2: separation of affinity from specificity. Mol Immunol 1993, 30(14):1279-1285.
  • [42]Hughes EE, Gilleland HE Jr, Matthews-Greer JM: Analysis by flow cytometry of surface-exposed epitopes of outer membrane protein F of Pseudomonas aeruginosa. Can J Microbiol 1996, 42(8):859-862.
  • [43]Nakayama K, Takashima K, Ishihara H, Shinomiya T, Kageyama M, Kanaya S, Ohnishi M, Murata T, Mori H, Hayashi T: The R-type pyocin of Pseudomonas aeruginosa is related to P2 phage, and the F-type is related to lambda phage. Mol Microbiol 2000, 38(2):213-231.
  • [44]Waite RD, Curtis MA: Pseudomonas aeruginosa PAO1 pyocin production affects population dynamics within mixed-culture biofilms. J Bacteriol 2009, 191(4):1349-1354.
  • [45]Bakkal S, Robinson SM, Ordonez CL, Waltz DA, Riley MA: Role of bacteriocins in mediating interactions of bacterial isolates taken from cystic fibrosis patients. Microbiology 2010, 156(7):2058-2067.
  • [46]Kluge S, Hoffmann M, Benndorf D, Rapp E, Reichl U: Proteomic tracking and analysis of a bacterial mixed culture. Proteomics 2012, 12(12):1893-1901.
  • [47]Machan ZA, Taylor GW, Pitt TL, Cole PJ, Wilson R: 2-Heptyl-4-hydroxyquinoline N-oxide, an antistaphylococcal agent produced by Pseudomonas aeruginosa. J Antimicrob Chemother 1992, 30(5):615-623.
  • [48]Voggu L, Schlag S, Biswas R, Rosenstein R, Rausch C, Götz F: Microevolution of cytochrome bd oxidase in staphylococci and its implication in resistance to respiratory toxins released by pseudomonas. J Bacteriol 2006, 188(23):8079-8086.
  • [49]Kovárová-Kovar K, Egli T: Growth kinetics of suspended microbial cells: from single-substrate-controlled growth to mixed-substrate kinetics. Microbiol Mol Biol Rev 1998, 62(3):646-666.
  • [50]Baron SS, Rowe JJ: Antibiotic action of pyocyanin. Antimicrob Agents Chemother 1981, 20(6):814-820.
  • [51]Biswas L, Biswas R, Schlag M, Bertram R, Götz F: Small-colony variant selection as a survival strategy for Staphylococcus aureus in the presence of Pseudomonas aeruginosa. Appl Environ Microbiol 2009, 75(21):6910-6912.
  • [52]Kessler E, Safrin M, Olson JC, Ohman DE: Secreted LasA of Pseudomonas aeruginosa is a staphylolytic protease. J Biol Chem 1993, 268(10):7503-7508.
  • [53]Allan ND, Kooi C, Sokol PA, Beveridge TJ: Putative virulence factors are released in association with membrane vesicles from Burkholderia cepacia. Can J Microbiol 2003, 49(10):613-624.
  • [54]Lessie TG, Phibbs PV: Alternative pathways of carbohydrate utilization in pseudomonads. Annu Rev Microbiol 1984, 38(1):359-388.
  • [55]Roberts BK, Midgley M, Dawes EA: The metabolism of 2-oxogluconate by Pseudomonas aeruginosa. J Gen Microbiol 1973, 78(2):319-329.
  • [56]David F, Berger A, Hansch R, Rohde M, Franco-Lara E: Single cell analysis applied to antibody fragment production with Bacillus megaterium: development of advanced physiology and bioprocess state estimation tools. Microb Cell Fact 2011, 10(1):23. BioMed Central Full Text
  • [57]Shapiro HM: Multiparameter flow cytometry of bacteria: Implications for diagnostics and therapeutics. Cytometry 2001, 43(3):223-226.
  • [58]Riedel K, Hentzer M, Geisenberger O, Huber B, Steidle A, Wu H, Høiby N, Givskov M, Molin S, Eberl L: N-Acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms. Microbiology 2001, 147(12):3249-3262.
  • [59]Kim E-J, Wang W, Deckwer W-D, Zeng A-P: Expression of the quorum-sensing regulatory protein LasR is strongly affected by iron and oxygen concentrations in cultures of Pseudomonas aeruginosa irrespective of cell density. Microbiology 2005, 151(4):1127-1138.
  • [60]Ochsner UA, Wilderman PJ, Vasil AI, Vasil ML: GeneChip® expression analysis of the iron starvation response in Pseudomonas aeruginosa: identification of novel pyoverdine biosynthesis genes. Mol Microbiol 2002, 45(5):1277-1287.
  文献评价指标  
  下载次数:135次 浏览次数:51次