期刊论文详细信息
BMC Cancer
MicroRNA-26b inhibits epithelial-mesenchymal transition in hepatocellular carcinoma by targeting USP9X
Gang Shen5  Ye Lin1  Xuewei Yang2  Jing Zhang5  Zhe Xu4  Hongyun Jia3 
[1] Department of general surgery, Guangdong Gerernal Hospital, Guangzhou, China
[2] Department of Hepatobiliary Surgery, the second affiliated hospital of Guangzhou Medical University, Guangzhou, China
[3] Department of clinical examination, the second affiliated hospital of Guangzhou Medical University, Guangzhou, China
[4] Department of Pediatric Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
[5] Department of interventional Radioloby and Vascular Anomalies, Affilated Guangzhou women and children’s medical center of Guangzhou Medical University, Guangzhou, China
关键词: Hepatocellular carcinoma;    Epithelial-mesenchymal transition;    USP9X;    miR-26;   
Others  :  858746
DOI  :  10.1186/1471-2407-14-393
 received in 2013-12-01, accepted in 2014-05-20,  发布年份 2014
PDF
【 摘 要 】

Background

Metastasis is responsible for the rapid recurrence and poor survival of malignancies. Epithelial-mesenchymal transition (EMT) has a critical role in metastasis. Increasing evidence indicates that EMT can be regulated by microRNAs (miRNAs). The aim of this study was to investigate the role of miR-26b in modulating epithelial-mesenchymal transition (EMT) in hepatocellular carcinoma (HCC), as well as to identify its underlying mechanism of action.

Methods

The expression level of miR-26b was assessed in multiple HCC cell lines (HepG2, MHCC97H, Hep3B, MHCC97L, HCCC9810, BEL-7402, Huh7 and QGY-7703), as well as in liver tissue from patients with HCC. Follow-up studies examined the effects of a miR-26b mimic (increased expression) and a miR-26b inhibitor (decreased expression) on markers of EMT, wound healing and cell migration. The molecular target of miR-26b was also identified using a computer algorithm and confirmed experimentally.

Results

MiR-26b expression was decreased in HCC cell lines and was inversely correlated with the grade of HCC. Increased expression of miR-26b inhibited the migration and invasiveness of HCC cell lines, which was accompanied by decreased expression of the epithelial marker E-cadherin and increased expression of the mesenchymal marker vimentin, at both the mRNA and protein expression levels. A binding site for miR-26b was theoretically identified in the 3′UTR of USP9X. Further studies revealed that overexpression of miR-26b repressed the endogenous level of USP9X protein expression. Overexpression of miR-26b also repressed Smad4 expression, whereas its inhibition elevated Smad4 expression.

Conclusions

Taken together, our results indicate that miR-26b were inhibited in HCC. In HCC cell lines, miR-26b targeted the 3′UTR of USP9X, which in turn affects EMT through Smad4 and the TGF-β signaling pathway. Our analysis of clinical HCC samples verifies that miR-26b also targets USP9X expression to inhibit the EMT of hepatocytes. Thus, miR-26b may have some effects on the EMT of HCC cells.

【 授权许可】

   
2014 Shen et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140724021550185.pdf 1823KB PDF download
144KB Image download
150KB Image download
122KB Image download
106KB Image download
54KB Image download
【 图 表 】

【 参考文献 】
  • [1]El-Serag HB, Rudolph KL: Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 2007, 132(7):2557-2576.
  • [2]Gao J, Inagaki Y, Song P, Qu X, Kokudo N, Tang W: Targeting c-Met as a promising strategy for the treatment of hepatocellular carcinoma. Pharmacol Res 2012, 65(1):23-30.
  • [3]Kubo S, Takemura S, Sakata C, Urata Y, Uenishi T: Adjuvant therapy after curative resection for hepatocellular carcinoma associated with hepatitis virus. Liver Cancer 2013, 2(1):40-46.
  • [4]Aravalli RN, Steer CJ, Cressman EN: Molecular mechanisms of hepatocellular carcinoma. Hepatology 2008, 48(6):2047-2063.
  • [5]Heldin C-H, Vanlandewijck M, Moustakas A: Regulation of EMT by TGFb in cancer. FEBS Lett 2012, 586(14):1959-1970.
  • [6]Jing Y, Han Z, Liu Y, Sun K, Zhang S, Jiang G, Li R, Gao L, Zhao X, Wu D, Cai X, Wu M, Wei L: Mesenchymal stem cells in inflammation microenvironment accelerates hepatocellular carcinoma metastasis by inducing epithelial-mesenchymal transition. PLoS ONE 2012, 7(8):e43272.
  • [7]Zheng X, Vittar NB, Gai X, Fernandez-Barrena MG, Moser CD, Hu C, Almada LL, McCleary-Wheeler AL, Elsawa SF, Vrabel AM, Shire AM, Comba A, Thorgeirsson SS, Kim Y, Liu Q, Fernandez-Zapico ME, Roberts LR: The transcription factor GLI1 mediates TGFb1 driven EMT in hepatocellular carcinoma via a SNAI1-dependent mechanism. PLoS ONE 2012, 7(11):e49581.
  • [8]Mima K, Hayashi H, Kuroki H, Nakagawa S, Okabe H, Chikamoto A, Watanabe M, Beppu T, Baba H: Epithelial-mesenchymal transition expression profiles as a prognostic factor for disease-free survival in hepatocellular carcinoma: clinical significance oftransforming growth factor-β signaling. Oncol Lett 2013, 5(1):149-154.
  • [9]Bonde AK, Tischler V, Kumar S, Soltermann A, Schwendener RA: Intratumoral macrophages contribute to epithelial-mesenchymal transition in solid tumors. BMC Cancer 2012, 24(1):12-26.
  • [10]Mima K, Okabe H, Ishimoto T, Hayashi H, Nakagawa S, Kuroki H, Watanabe M, Beppu T, Tamada M, Nagano O, Saya H, Baba H: CD44s regulates the TGF-β-mediated mesenchymal phenotype and is associated with poor prognosis in patients with hepatocellular carcinoma. Cancer Res 2012, 72(13):3414-3423.
  • [11]Nagai T, Arao T, Furuta K, Sakai K, Kudo K, Kaneda H, Tamura D, Aomatsu K, Kimura H, Fujita Y, Matsumoto K, Saijo N, Kudo M, Nishio K: Sorafenib inhibits the hepatocyte growth factor-mediated epithelial mesenchymal transition in hepatocellular carcinoma. Mol Cancer Ther 2011, 10(1):169-177.
  • [12]Acloque H, Adams MS, Fishwick K, Bronner-Fraser M, Nieto MA: Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest 2009, 119(6):1438-1449.
  • [13]Lahsnig C, Mikula M, Petz M, Zulehner G, Schneller D, Van Zijl F, Huber H, Csiszar A, Beug H, Mikulits W: ILEI requires oncogenic Ras for the epithelial to mesenchymal transition of hepatocytes and liver carcinoma progression. Oncogen 2009, 28(5):638-650.
  • [14]Le Gendre O, Sookdeo A, Duliepre SA, Utter M, Frias M, Foster DA: Suppression of AKT phosphorylation restores rapamycin-based synthetic lethality inSMAD4-defective pancreatic cancer cells. Mol Cancer Res 2013, 11(5):474-481.
  • [15]Liu L, Nie J, Chen L, Dong G, Du X, Wu X, Tang Y, Han W: The oncogenic role of microRNA-130a/301a/454 in human colorectal cancer via targeting Smad4 expression. PLoS ONE 2013, 8(2):e55532.
  • [16]Schwenter F, Faughnan ME, Gradinger AB, Berk T, Gryfe R, Pollett A, Cohen Z, Gallinger S, Durno C: Juvenile polyposis, hereditary hemorrhagic telangiectasia, and early onset colorectal cancer in patients with SMAD4 mutation. J Gastroenterol 2012, 47(7):795-804.
  • [17]Kudo-Saito C, Shirako H, Takeuchi T, Kawakami Y: Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer Cell 2009, 15(3):195-206.
  • [18]Imamura T, Oshima Y, Hikita A: Regulation of TGF-β family signaling by ubiquitination and deubiquitination. J Biochem 2013, 154(6):481-489.
  • [19]Yang CC, Wolf DA: Inflamed snail speeds metastasis. Cancer Cell 2009, 15(5):355-357.
  • [20]Schwickart M, Huang X, Lill JR, Liu J, Ferrando R, French DM, Maecker H, O’Rourke K, Bazan F, Eastham-Anderson J, Yue P, Dornan D, Huang DC, Dixit VM: Deubiquitinase USP9X stabilizes MCL1 and promotes tumour cell survival. Nature 2010, 463(7277):103-107.
  • [21]Han KJ, Foster DG, Zhang NY, Kanisha K, Dzieciatkowska M, Sclafani RA, Hansen KC, Peng J, Liu CW: Ubiquitin-specific protease 9x deubiquitinates and stabilizes the spinal muscular atrophy protein-survival motor neuron. J Biol Chem 2012, 287(52):43741-43752.
  • [22]Zhang Z, Liu ZB, Ren WM, Ye XG, Zhang YY: The miR-200 family regulates the epithelial-mesenchymal transition induced by EGF/EGFR in anaplastic thyroid cancer cells. Int J Mol Med 2012, 30(4):856-862.
  • [23]Hollier BG, Tinnirello AA, Werden SJ, Evans KW, Taube JH, Sarkar TR, Sphyris N, Shariati M, Kumar SV, Battula VL, Herschkowitz JI, Guerra R, Chang JT, Miura N, Rosen JM, Mani SA: FOXC2 expression links epithelial-mesenchymal transition and stem cell properties in breast cancer. Cancer Res 2013, 73(6):1981-1992.
  • [24]Li J, Li X, Kong X, Luo Q, Zhang J, Fang L: MiRNA-26b inhibits cellular proliferation by targeting CDK8 in breast cancer. Int J Clin Exp Med 2014, 7(3):558-565.
  • [25]Ji Y, He Y, Liu L, Zhong X: MiRNA-26b regulates the expression of cyclooxygenase-2 in desferrioxamine-treated CNE cells. FEBS Lett 2010, 584(5):961-967.
  • [26]Zhang C, Tong J, Huang G: Nicotinamide phosphoribosyl transferase (Nampt) is a target of microRNA-26b incolorectal cancer cells. PLoS One 2013, 8(7):e69963.
  • [27]Gramantieri L, Fornari F, Callegari E, Sabbioni S, Lanza G, Croce CM, Bolondi L, Negrini M: microRNA involvement in hepatocellular carcinoma. J Cell Mol Med 2008, 12(6A):2189-2204.
  • [28]Ji J, Shi J, Budhu A, Yu Z, Forgues M, Roessler S, Ambs S, Chen Y, Meltzer PS, Croce CM, Qin LX, Man K, Lo CM, Lee J, Ng IO, Fan J, Tang ZY, Sun HC, Wang XW: microRNA expression, survival and response to interforn in liver cancer. N Engl J Med 2009, 361(15):1437-1447.
  • [29]Palumbo T, Faucz FR, Azevedo M, Xekouki P, Iliopoulos D, Stratakis CA: Functional screen analysis reveals miR-26b and miR-128 as central regulators of pituitary somatomammotrophic tumor growth through activation of the PTEN-AKT pathway. Oncogene 2013, 32(13):1651-1659.
  • [30]Le Goff C, Mahaut C, Abhyankar A, Le Goff W, Serre V, Afenjar A, Destrée A, Di Rocco M, Héron D, Jacquemont S, Marlin S, Simon M, Tolmie J, Verloes A, Casanova JL, Munnich A, Cormier-Daire V: Mutations at a single codon in Mad homology 2 domain of SMAD4 cause Myhre syndrome. Nat Genet 2011, 44(1):85-88.
  • [31]Pérez-Mancera PA, Rust AG, van der Weyden L, Kristiansen G, Li A, Sarver AL, Silverstein KA, Grützmann R, Aust D, Rümmele P, Knösel T, Herd C, Stemple DL, Kettleborough R, Brosnan JA, Li A, Morgan R, Knight S, Yu J, Stegeman S, Collier LS, Ten Hoeve JJ, De Ridder J, Klein AP, Goggins M, Hruban RH, Chang DK, Biankin AV, Grimmond SM, Wessels LF, et al.: The deubiquitinase USP9X suppresses pancreatic ductal adenocarcinoma. Nature 2012, 486(7402):266-270.
  • [32]Dupont S, Mamidi A, Cordenonsi M, Montagner M, Zacchigna L, Adorno M, Martello G, Stinchfield MJ, Soligo S, Morsut L, Inui M, Moro S, Modena N, Argenton F, Newfeld SJ, Piccolo S: FAM/USP9x, a deubiquitinating enzyme essential for TGFbeta signaling, controls Smad4 monoubiquitination. Cell 2009, 136(1):123-135.
  • [33]Xia H, Ooi LL, Hui KM: MicroRNA-216a/217-induced epithelial-mesenchymal transition targets PTEN and SMAD7 to promote drug resistance and recurrence of liver cancer. Hepatology 2013, 58(2):629-641.
  • [34]Zhao N, Wang R, Zhou L, Zhu Y, Gong J, Zhuang SM: MicroRNA-26b suppresses the NF-κB signaling and enhances the chemosensitivity of hepatocellular carcinoma cells by targeting TAK1 and TAB3. Mol Cancer 2014, 13(2):35-46.
  • [35]Zhu Y, Lu Y, Zhang Q, Liu JJ, Li TJ, Yang JR, Zeng C, Zhuang SM: MicroRNA-26a/b and their host genes cooperate to inhibit the G1/S transition by activating the pRb protein. Nucleic Acids Res 2012, 40(10):4615-4625.
  • [36]Lu J, He ML, Wang L, Chen Y, Liu X, Dong Q, Chen YC, Peng Y, Yao KT, Kung HF, Li XP: MiR-26a inhibits cell growth and tumorigenesis of nasopharyngeal carcinoma through repression of EZH2. Cancer Res 2011, 71(1):225-233.
  • [37]Ma YL, Zhang P, Wang F, Moyer MP, Yang JJ, Liu ZH, Peng JY, Chen HQ, Zhou YK, Liu WJ, Qin HL: Human embryonic stem cells and metastatic colorectal cancer cells shared the common endogenous human microRNA-26b. J Cell Mol Med 2011, 15(9):1941-1954.
  • [38]Théard D, Labarrade F, Partisani M, Milanini J, Sakagami H, Fon EA, Wood SA, Franco M, Luton F: USP9x-mediated deubiquitination of EFA6 regulates de novo tight junction assembly. EMBO J 2010, 29(9):1499-1509.
  文献评价指标  
  下载次数:57次 浏览次数:60次