期刊论文详细信息
BMC Genomics
Evaluation and validation of a robust single cell RNA-amplification protocol through transcriptional profiling of enriched lung cancer initiating cells
Ged Brady6  Caroline Dive6  Luca Roz5  Giulia Bertolini5  Fiona Blackhall1  Crispin Miller3  Stuart Pepper2  Massimo Moro5  Suzanne Faulkner6  Louise Carter6  Yvonne Hey2  Gillian Newton2  Catriona Tate6  Mahmood Ayub6  Yaoyong Li4  Dominic G Rothwell6 
[1] Christie NHS Foundation Trust, Institute of Cancer Sciences, University of Manchester, Manchester M20 4BX, UK;Molecular Biology Core Facility, CR-UK Manchester Institute, University of Manchester, Manchester M20 4BX, UK;RNA Biology Group, CR-UK Manchester Institute, University of Manchester, Manchester M20 4BX, UK;Computational Biology Support, CR-UK Manchester Institute, University of Manchester, Manchester M20 4BX, UK;Department of Experimental Oncology, Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano 20133, Italy;Nucleic Acid Biomarker Laboratory, Clinical & Experimental Pharmacology, CR-UK Manchester Institute, University of Manchester, Manchester M20 4BX, UK
关键词: Cancer initiating cell;    Microarray;    RNA-Seq;    Transcriptional profiling;    Single cell;    RNA-Amplification;   
Others  :  1127142
DOI  :  10.1186/1471-2164-15-1129
 received in 2014-09-09, accepted in 2014-12-11,  发布年份 2014
PDF
【 摘 要 】

Background

Although profiling of RNA in single cells has broadened our understanding of development, cancer biology and mechanisms of disease dissemination, it requires the development of reliable and flexible methods. Here we demonstrate that the EpiStem RNA-Amp™ methodology reproducibly generates microgram amounts of cDNA suitable for RNA-Seq, RT-qPCR arrays and Microarray analysis.

Results

Initial experiments compared amplified cDNA generated by three commercial RNA-Amplification protocols (Miltenyi μMACS™ SuperAmp™, NuGEN Ovation® One-Direct System and EpiStem RNA-Amp™) applied to single cell equivalent levels of RNA (25–50 pg) using Affymetrix arrays. The EpiStem RNA-Amp™ kit exhibited the highest sensitivity and was therefore chosen for further testing. A comparison of Affymetrix array data from RNA-Amp™ cDNA generated from single MCF7 and MCF10A cells to reference controls of unamplified cDNA revealed a high degree of concordance. To assess the flexibility of the amplification system single cell RNA-Amp™ cDNA was also analysed using RNA-Seq and high-density qPCR, and showed strong cross-platform correlations. To exemplify the approach we used the system to analyse RNA profiles of small populations of rare cancer initiating cells (CICs) derived from a NSCLC patient-derived xenograft. RNA-Seq analysis was able to identify transcriptional differences in distinct subsets of CIC, with one group potentially enriched for metastasis formation. Pathway analysis revealed that the distinct transcriptional signatures demonstrated in the CIC subpopulations were significantly correlated with published stem-cell and epithelial-mesenchymal transition signatures.

Conclusions

The combined results confirm the sensitivity and flexibility of the RNA-Amp™ method and demonstrate the suitability of the approach for identifying clinically relevant signatures in rare, biologically important cell populations.

【 授权许可】

   
2014 Rothwell et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150220023008253.pdf 4247KB PDF download
Figure 6. 188KB Image download
Figure 5. 56KB Image download
Figure 4. 216KB Image download
Figure 3. 63KB Image download
Figure 2. 66KB Image download
Figure 1. 65KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, Wang X, Bodeau J, Tuch BB, Siddiqui A, Lao K, Surani MA: mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 2009, 6(5):377-382.
  • [2]Picelli S, Bjorklund AK, Faridani OR, Sagasser S, Winberg G, Sandberg R: Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods 2013, 10(11):1096-1098.
  • [3]Hartmann CH, Klein CA: Gene expression profiling of single cells on large-scale oligonucleotide arrays. Nucleic Acids Res 2006, 34:e143.
  • [4]Klein CA, Seidl S, Petat-Dutter K, Offner S, Geigl JB, Schmidt-Kittler O, Wendler N, Passlick B, Huber RM, Schlimok G, Baeuerle PA, Riethmüller G: Combined transcriptome and genome analysis of single micrometastatic cells. Nat Biotechnol 2002, 20:387-392.
  • [5]Brady G, Barbara M, Iscove NN: Representative in vitro amplification from individual hemopoietic cells and colonies. Methods Mol Cell Biol 1990, 2:17-25.
  • [6]Ali MM, Li F, Zhang Z, Zhang K, Kang DK, Ankrum JA, Le XC, Zhao W: Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine. Chem Soc Rev 2014, 43(10):3324-3341.
  • [7]Ramskold D, Luo S, Wang YC, Li R, Deng Q, Faridani OR, Daniels GA, Khrebtukova I, Loring JF, Laurent LC, Schroth GP, Sandberg R: Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol 2012, 30(8):777-782.
  • [8]Kawasaki ES: Microarrays and the gene expression profile of a single cell. Ann N Y Acad Sci 2004, 1020:2-100.
  • [9]Schena M, Shalon D, Davis RW, Brown PO: Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995, 270(5235):467-470.
  • [10]DeRisi J, Penland L, Brown PO, Bittner ML, Meltzer PS, Ray M, Chen Y, Su YA, Trent JM: Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet 1996, 14(4):457-460.
  • [11]Wang Z, Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009, 10(1):57-63.
  • [12]Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008, 5(7):621-628.
  • [13]Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 2010, 28(5):511-515.
  • [14]Murphy J, Bustin SA: Reliability of real-time reverse-transcription PCR in clinical diagnostics: gold standard or substandard? Expert Rev Mol Diagn 2009, 9:187-197.
  • [15]Krebs MG, Hou JM, Ward TH, Blackhall FH, Dive C: Circulating tumour cells: their utility in cancer management and predicting outcomes. Ther Adv Med Oncol 2010, 2(6):351-365.
  • [16]Visvader JE, Lindeman GJ: Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 2008, 8:755-768.
  • [17]Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL, Wahl GM: Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 2006, 66:9339-9344.
  • [18]Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T: Opinion: migrating cancer stem cells - an integrated concept of malignant tumour progression. Nat Rev Cancer 2005, 5:744-749.
  • [19]Bertolini G, Roz L, Perego P, Tortoreto M, Fontanella E, Gatti L, Pratesi G, Fabbri A, Andriani F, Tinelli S, Roz E, Caserini R, Lo Vullo S, Camerini T, Mariani L, Delia D, Calabrò E, Pastorino U, Sozzi G: Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment. Proc Natl Acad Sci U S A 2009, 106:16281-16286.
  • [20]Bertolini G, Moro M, Tortoreto M, Caserini R, Pastorino U, Roz L, Sozzi G: The subset of CD133+/CXCR4+/EpCAM- cancer initiating cells is responsible for lung tumor metastatic spreading [abstract]. Eur J Cancer 2012, 48(Supplement: 5):S90-S90. 372
  • [21]Loboda A, Nebozhyn MV, Watters JW, Buser CA, Shaw PM, Huang PS, Van’t VL, Tollenaar RA, Jackson DB, Agrawal D, Dai H, Yeatman TJ: EMT is the dominant program in human colon cancer. BMC Med Genomics 2011, 4:9. BioMed Central Full Text
  • [22]Blick T, Hugo H, Widodo E, Waltham M, Pinto C, Mani SA, Weinberg RA, Neve RM, Lenburg ME, Thompson EW: Epithelial mesenchymal transition traits in human breast cancer cell lines parallel the CD44(hi/)CD24 (lo/-) stem cell phenotype in human breast cancer. J Mammary Gland Biol Neoplasia 2010, 15:235-252.
  • [23]Bitton DA, Okoniewski MJ, Connolly Y, Miller CJ: Exon level integration of proteomics and microarray data. BMC Bioinformatics 2008, 9:118. BioMed Central Full Text
  • [24]Jiao X, Sherman BT, da Huang W, Stephens R, Baseler MW, Lane HC, Lempicki RA: DAVID-WS: a stateful web service to facilitate gene/protein list analysis. Bioinformatics 2012, 28(13):1805-1806.
  • [25]Culhane AC, Schroder MS, Sultana R, Picard SC, Martinelli EN, Kelly C, Haibe-Kains B, Kapushesky M, St Pierre AA, Flahive W, Picard KC, Gusenleitner D, Papenhausen G, O'Connor N, Correll M, Quackenbush J: GeneSigDB: a manually curated database and resource for analysis of gene expression signatures. Nucleic Acids Res 2012, 40:D1060-D1066.
  • [26]Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J: Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004, 5:R80. BioMed Central Full Text
  • [27]Taube JH, Herschkowitz JI, Komurov K, Zhou AY, Gupta S, Yang J, Hartwell K, Onder TT, Gupta PB, Evans KW, Hollier BG, Ram PT, Lander ES, Rosen JM, Weinberg RA, Mani SA: Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc Natl Acad Sci U S A 2010, 107:15449-15454.
  • [28]Belyavsky A, Vinogradova T, Rajewsky K: PCR-based cDNA library construction: general cDNA libraries at the level of a few cells. Nucleic Acids Res 1989, 17:2919-2932.
  • [29]Eberwine J, Yeh H, Miyashiro K, Cao Y, Nair S, Finnell R, Zettel M, Coleman P: Analysis of gene expression in single live neurons. Proc Natl Acad Sci U S A 1992, 89:3010-3014.
  • [30]Cumano A, Paige CJ, Iscove NN, Brady G: Bipotential precursors of B cells and macrophages in murine fetal liver. Nature 1992, 356:612-615.
  • [31]Dulac C, Axel R: A novel family of genes encoding putative pheromone receptors in mammals. Cell 1995, 83:195-206.
  • [32]Tang F, Lao K, Surani MA: Development and applications of single-cell transcriptome analysis. Nat Methods 2011, 8:S6-S11.
  • [33]Alix-Panabieres C, Pantel K: Circulating tumor cells: liquid biopsy of cancer. Clin Chem 2013, 59:110-118.
  • [34]Pantel K, Brakenhoff RH, Brandt B: Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat Rev Cancer 2008, 8:329-340.
  • [35]Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA: The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008, 133:704-715.
  • [36]Polyak K, Weinberg RA: Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 2009, 9:265-273.
  • [37]Aktas B, Tewes M, Fehm T, Hauch S, Kimmig R, Kasimir-Bauer S: Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Res 2009, 11:R46. BioMed Central Full Text
  • [38]Balic M, Lin H, Young L, Hawes D, Giuliano A, McNamara G, Datar RH, Cote RJ: Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin Cancer Res 2006, 12:5615-5621.
  • [39]Baccelli I, Schneeweiss A, Riethdorf S, Stenzinger A, Schillert A, Vogel V, Klein C, Saini M, Bauerle T, Wallwiener M, Holland-Letz T, Höfner T, Sprick M, Scharpff M, Marmé F, Sinn HP, Pantel K, Weichert W, Trumpp A: Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol 2013, 31:539-544.
  • [40]Zhang L, Ridgway LD, Wetzel MD, Ngo J, Yin W, Kumar D, Goodman JC, Groves MD, Marchetti D: The identification and characterization of breast cancer CTCs competent for brain metastasis. Sci Transl Med 2013, 5:180ra48.
  • [41]Sekine I, Minna JD, Nishio K, Tamura T, Saijo N: A literature review of molecular markers predictive of clinical response to cytotoxic chemotherapy in patients with lung cancer. J Thorac Oncol 2006, 1:31-37.
  • [42]Nakanishi Y, Kawasaki M, Bai F, Takayama K, Pei XH, Takano K, Inoue K, Osaki S, Hara N, Kiyohara C: Expression of p53 and glutathione S-transferase-pi relates to clinical drug resistance in non-small cell lung cancer. Oncology 1999, 57:318-323.
  • [43]Smalley MJ, Reis-Filho JS, Ashworth A: BRCA1 and stem cells: tumour typecasting. Nat Cell Biol 2008, 10:377-379.
  • [44]Buckley NE, Mullan PB: BRCA1–conductor of the breast stem cell orchestra: the role of BRCA1 in mammary gland development and identification of cell of origin of BRCA1 mutant breast cancer. Stem Cell Rev 2012, 8:982-993.
  • [45]Sotiropoulou PA, Karambelas AE, Debaugnies M, Candi A, Bouwman P, Moers V, Revenco T, Rocha AS, Sekiguchi K, Jonkers J, Blanpain C: BRCA1 deficiency in skin epidermis leads to selective loss of hair follicle stem cells and their progeny. Genes Dev 2013, 27:39-51.
  • [46]Moro M, Bertolini G, Tortoreto M, Pastorino U, Sozzi G, Roz L: Patient-derived xenografts of non-small cell lung cancer: resurgence of an old model for investigation of modern concepts of tailored therapy and cancer stem cells. J Biomed Biotechnol 2012, 2012:1-11.
  • [47]Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistisc 2003, 4:249-264.
  • [48]Yates T, Okoniewski MJ, Miller CJ: X:Map: annotation and visualization of genome structure for Affymetrix exon array analysis. Nucleic Acids Res 2008, 36:D780-D786.
  • [49]Smyth GK: Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004, 3:Article 3.
  • [50]Smyth GK: LIMMA: Linear models for microarray data. In Bioinformatics and Computational Biology Solutions using R and Bioconductor. Edited by Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W. New York: Springer; 2005:397-420.
  • [51]Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Bio 2009, 10:R25. BioMed Central Full Text
  • [52]David M, Dzamba M, Lister D, Ilie L, Brudno M: SHRiMP2: sensitive yet practical SHort Read Mapping. Bioinformatics 2011, 27:1011-1012.
  • [53]Robinson MD, McCarthy DJ, Smyth GK: edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26:139-140.
  • [54]Robinson MD, Smyth GK: Moderated statistical tests for assessing differences in tag abundance. Bioinformatics 2007, 23:2881-2887.
  文献评价指标  
  下载次数:58次 浏览次数:23次