期刊论文详细信息
BMC Evolutionary Biology
Molecular evolution of a-kinase anchoring protein (AKAP)-7: implications in comparative PKA compartmentalization
Robert S Danziger2  Graeme K Carnegie1  Jessie Nicodemus-Johnson3  Keven R Johnson4 
[1] Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA;Department of Cardiology, University of Illinois at Chicago, 840S. Wood Street, Chicago, IL 60612, USA;Department of Human Genetics, University of Chicago, Chicago, IL, USA;Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
关键词: AKAP15/18;    PKA compartmentalization;    PKA regulatory subunit;    Protein evolution;    A-Kinase anchoring protein;   
Others  :  1140773
DOI  :  10.1186/1471-2148-12-125
 received in 2011-12-30, accepted in 2012-07-10,  发布年份 2012
PDF
【 摘 要 】

Background

A-Kinase Anchoring Proteins (AKAPs) are molecular scaffolding proteins mediating the assembly of multi-protein complexes containing cAMP-dependent protein kinase A (PKA), directing the kinase in discrete subcellular locations. Splice variants from the AKAP7 gene (AKAP15/18) are vital components of neuronal and cardiac phosphatase complexes, ion channels, cardiac Ca2+ handling and renal water transport.

Results

Shown in evolutionary analyses, the formation of the AKAP7-RI/RII binding domain (required for AKAP/PKA-R interaction) corresponds to vertebrate-specific gene duplication events in the PKA-RI/RII subunits. Species analyses of AKAP7 splice variants shows the ancestral AKAP7 splice variant is AKAP7α, while the ancestral long form AKAP7 splice variant is AKAP7γ. Multi-species AKAP7 gene alignments, show the recent formation of AKAP7δ occurs with the loss of native AKAP7γ in rats and basal primates. AKAP7 gene alignments and two dimensional Western analyses indicate that AKAP7γ is produced from an internal translation-start site that is present in the AKAP7δ cDNA of mice and humans but absent in rats. Immunofluorescence analysis of AKAP7 protein localization in both rat and mouse heart suggests AKAP7γ replaces AKAP7δ at the cardiac sarcoplasmic reticulum in species other than rat. DNA sequencing identified Human AKAP7δ insertion-deletions (indels) that promote the production of AKAP7γ instead of AKAP7δ.

Conclusions

This AKAP7 molecular evolution study shows that these vital scaffolding proteins developed in ancestral vertebrates and that independent mutations in the AKAP7 genes of rodents and early primates has resulted in the recent formation of AKAP7δ, a splice variant of likely lesser importance in humans than currently described.

【 授权许可】

   
2012 Johnson et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150325105236709.pdf 1973KB PDF download
Figure 9. 95KB Image download
Figure 8. 140KB Image download
Figure 7. 34KB Image download
Figure 6. 69KB Image download
Figure 5. 55KB Image download
Figure 4. 96KB Image download
Figure 3. 60KB Image download
Figure 2. 58KB Image download
Figure 1. 49KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Fraser ID, et al.: A novel lipid-anchored A-kinase Anchoring Protein facilitates cAMP-responsive membrane events. EMBO J 1998, 17(8):2261-2272.
  • [2]Tibbs VC, et al.: AKAP15 anchors cAMP-dependent protein kinase to brain sodium channels. J Biol Chem 1998, 273(40):25783-25788.
  • [3]Paulucci-Holthauzen AA, et al.: Spatial distribution of protein kinase A activity during cell migration is mediated by A-kinase anchoring protein AKAP Lbc. J Biol Chem 2009, 284(9):5956-5967.
  • [4]Carnegie GK, Scott JD: A-kinase anchoring proteins and neuronal signaling mechanisms. Genes Dev 2003, 17(13):1557-1568.
  • [5]Banky P, et al.: Related protein-protein interaction modules present drastically different surface topographies despite a conserved helical platform. J Mol Biol 2003, 330(5):1117-1129.
  • [6]Newlon MG, et al.: The A-kinase anchoring domain of type IIalpha cAMP-dependent protein kinase is highly helical. J Biol Chem 1997, 272(38):23637-23644.
  • [7]Newlon MG, et al.: A novel mechanism of PKA anchoring revealed by solution structures of anchoring complexes. EMBO J 2001, 20(7):1651-1662.
  • [8]Fink MA, et al.: AKAP-mediated targeting of protein kinase a regulates contractility in cardiac myocytes. Circ Res 2001, 88(3):291-297.
  • [9]Potet F, et al.: AKAP proteins anchor cAMP-dependent protein kinase to KvLQT1/IsK channel complex. Am J Physiol Heart Circ Physiol 2001, 280(5):H2038-H2045.
  • [10]Zaccolo M, Pozzan T: Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science 2002, 295(5560):1711-1715.
  • [11]Mauban JR, et al.: AKAP-scaffolding proteins and regulation of cardiac physiology. Physiology (Bethesda) 2009, 24:78-87.
  • [12]Jarnaess E, et al.: Dual specificity A-kinase anchoring proteins (AKAPs) contain an additional binding region that enhances targeting of protein kinase A type I. J Biol Chem 2008, 283(48):33708-33718.
  • [13]Miki K, Eddy EM: Single amino acids determine specificity of binding of protein kinase A regulatory subunits by protein kinase A anchoring proteins. J Biol Chem 1999, 274(41):29057-29062.
  • [14]Gold MG, et al.: Molecular basis of AKAP specificity for PKA regulatory subunits. Mol Cell 2006, 24(3):383-395.
  • [15]Kinderman FS, et al.: A dynamic mechanism for AKAP binding to RII isoforms of cAMP-dependent protein kinase. Mol Cell 2006, 24(3):397-408.
  • [16]Colledge M, Scott JD: AKAPs: from structure to function. Trends Cell Biol 1999, 9(6):216-221.
  • [17]Dodge K, Scott JD: AKAP79 and the evolution of the AKAP model. FEBS Lett 2000, 476(1–2):58-61.
  • [18]Appert-Collin A, Baisamy L, Diviani D: Regulation of g protein-coupled receptor signaling by a-kinase anchoring proteins. J Recept Signal Transduct Res 2006, 26(5–6):631-646.
  • [19]Dessauer CW: Adenylyl cyclase–A-kinase anchoring protein complexes: the next dimension in cAMP signaling. Mol Pharmacol 2009, 76(5):935-941.
  • [20]Nijholt IM, et al.: Neuronal AKAP150 coordinates PKA and Epac-mediated PKB/Akt phosphorylation. Cell Signal 2008, 20(10):1715-1724.
  • [21]Baillie GS, Scott JD, Houslay MD: Compartmentalisation of phosphodiesterases and protein kinase A: opposites attract. FEBS Lett 2005, 579(15):3264-3270.
  • [22]Bajpai M, et al.: AKAP3 selectively binds PDE4A isoforms in bovine spermatozoa. Biol Reprod 2006, 74(1):109-118.
  • [23]Dell'Acqua ML, et al.: Regulation of neuronal PKA signaling through AKAP targeting dynamics. Eur J Cell Biol 2006, 85(7):627-633.
  • [24]Moss SJ, et al.: Functional modulation of GABAA receptors by cAMP-dependent protein phosphorylation. Science 1992, 257(5070):661-665.
  • [25]Hall DD, et al.: Critical role of cAMP-dependent protein kinase anchoring to the L-type calcium channel Cav1.2 via A-kinase anchor protein 150 in neurons. Biochemistry 2007, 46(6):1635-1646.
  • [26]Tunquist BJ, et al.: Loss of AKAP150 perturbs distinct neuronal processes in mice. Proc Natl Acad Sci U S A 2008, 105(34):12557-12562.
  • [27]Soderling SH, et al.: Loss of WAVE-1 causes sensorimotor retardation and reduced learning and memory in mice. Proc Natl Acad Sci U S A 2003, 100(4):1723-1728.
  • [28]Schillace RV, Scott JD: Association of the type 1 protein phosphatase PP1 with the A-kinase anchoring protein AKAP220. Curr Biol 1999, 9(6):321-324.
  • [29]Henn V, et al.: Identification of a novel A-kinase anchoring protein 18 isoform and evidence for its role in the vasopressin-induced aquaporin-2 shuttle in renal principal cells. J Biol Chem 2004, 279(25):26654-26665.
  • [30]Robinson ML, et al.: Association of the type I regulatory subunit of cAMP-dependent protein kinase with cardiac myocyte sarcolemma. Arch Biochem Biophys 1996, 330(1):181-187.
  • [31]Dodge-Kafka KL, et al.: The protein kinase A anchoring protein mAKAP coordinates two integrated cAMP effector pathways. Nature 2005, 437(7058):574-578.
  • [32]Kurokawa J, et al.: Regulatory actions of the A-kinase anchoring protein Yotiao on a heart potassium channel downstream of PKA phosphorylation. Proc Natl Acad Sci U S A 2004, 101(46):16374-16378.
  • [33]Carnegie GK, et al.: AKAP-Lbc mobilizes a cardiac hypertrophy signaling pathway. Mol Cell 2008, 32(2):169-179.
  • [34]Russell MA, et al.: The intermediate filament protein, synemin, is an AKAP in the heart. Arch Biochem Biophys 2006, 456(2):204-215.
  • [35]Reynolds JG, et al.: Identification and mapping of protein kinase A binding sites in the costameric protein myospryn. Biochim Biophys Acta 2007, 1773(6):891-902.
  • [36]Few WP, Scheuer T, Catterall WA: Dopamine modulation of neuronal Na(+) channels requires binding of A kinase-anchoring protein 15 and PKA by a modified leucine zipper motif. Proc Natl Acad Sci U S A 2007, 104(12):5187-5192.
  • [37]Cantrell AR, et al.: Molecular mechanism of convergent regulation of brain Na(+) channels by protein kinase C and protein kinase A anchored to AKAP-15. Mol Cell Neurosci 2002, 21(1):63-80.
  • [38]Lygren B, et al.: AKAP complex regulates Ca2+ re-uptake into heart sarcoplasmic reticulum. EMBO Rep 2007, 8(11):1061-1067.
  • [39]Hulme JT, et al.: A novel leucine zipper targets AKAP15 and cyclic AMP-dependent protein kinase to the C terminus of the skeletal muscle Ca2+ channel and modulates its function. J Biol Chem 2002, 277(6):4079-4087.
  • [40]Hulme JT, et al.: Beta-adrenergic regulation requires direct anchoring of PKA to cardiac CaV1.2 channels via a leucine zipper interaction with A kinase-anchoring protein 15. Proc Natl Acad Sci U S A 2003, 100(22):13093-13098.
  • [41]Bengrine A, Li J, Awayda MS: The A-kinase anchoring protein 15 regulates feedback inhibition of the epithelial Na + channel. FASEB J 2007, 21(4):1189-1201.
  • [42]Gray PC, Scott JD, Catterall WA: Regulation of ion channels by cAMP-dependent protein kinase and A-kinase anchoring proteins. Curr Opin Neurobiol 1998, 8(3):330-334.
  • [43]Dai S, Hall DD, Hell JW: Supramolecular assemblies and localized regulation of voltage-gated ion channels. Physiol Rev 2009, 89(2):411-452.
  • [44]Hundsrucker C, et al.: High-affinity AKAP7delta-protein kinase A interaction yields novel protein kinase A-anchoring disruptor peptides. Biochem J 2006, 396(2):297-306.
  • [45]Christian F, et al.: Small molecule AKAP-protein kinase A (PKA) interaction disruptors that activate PKA interfere with compartmentalized cAMP signaling in cardiac myocytes. J Biol Chem 2011, 286(11):9079-9096.
  • [46]Trotter KW, et al.: Alternative splicing regulates the subcellular localization of A-kinase anchoring protein 18 isoforms. J Cell Biol 1999, 147(7):1481-1492.
  • [47]Brown RL, et al.: AKAP7gamma is a nuclear RI-binding AKAP. Biochem Biophys Res Commun 2003, 306(2):394-401.
  • [48]Hausken ZE, et al.: Type II regulatory subunit (RII) of the cAMP-dependent protein kinase interaction with A-kinase anchor proteins requires isoleucines 3 and 5. J Biol Chem 1994, 269(39):24245-24251.
  • [49]Li Y, Rubin CS: Mutagenesis of the regulatory subunit (RII beta) of cAMP-dependent protein kinase II beta reveals hydrophobic amino acids that are essential for RII beta dimerization and/or anchoring RII beta to the cytoskeleton. J Biol Chem 1995, 270(4):1935-1944.
  • [50]Lygren B, Tasken KA: The potential use of AKAP18delta as a drug target in heart failure patients. Expert Opin Biol Ther 2008, 8:1099-1108.
  • [51]Tröger J, Moutty MC, Skroblin P, Klussmann E: A-kinase anchoring proteins as potential drug targets. Br J Pharmacol 2012, 166(2):420-33.
  • [52]Canaves JM, Taylor SS: Classification and phylogenetic analysis of the cAMP-dependent protein kinase regulatory subunit family. J Mol Evol 2002, 54(1):17-29.
  • [53]Singh A, et al.: The large isoforms of A-kinase anchoring protein 18 mediate the phosphorylation of inhibitor-1 by protein kinase A and the inhibition of protein phosphatase 1 activity. Mol Pharmacol 2011, 79(3):533-40.
  • [54]Josefsen K, et al.: AKAP 18 alpha and gamma have opposing effects on insulin release in INS-1E cells. FEBS Lett 2010, 1:81-5.
  • [55]Gray PC, et al.: Identification of a 15-kDa cAMP-dependent protein kinase-anchoring protein associated with skeletal muscle L-type calcium channels. J Biol Chem 1997, 272(10):6297-302.
  • [56]Gray PC, et al.: Primary structure and function of an A kinase anchoring protein associated with calcium channels. Neuron 1998, 20(5):1017-26.
  • [57]Fu Y, et al.: Deletion of the distal C terminus of CaV1.2 channels leads to loss of beta-adrenergic regulation and heart failure in vivo. J Biol Chem. 2011, 286(14):12617-26.
  • [58]Finn RD, et al.: The Pfam protein families database. Nucleic Acids Res 2008, 38(Database issue)):D211-22.
  • [59]Tamura K, et al.: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28(10):2731-9.
  • [60]Burge C, Karlin S: Prediction of complete gene structures in human genomic DNA. J Mol Biol 1997, 268(1):78-94.
  • [61]Knudsen S: Promoter2.0: for the recognition of PolII promoter sequences. Bioinformatics 1999, 15(5):356-61.
  文献评价指标  
  下载次数:400次 浏览次数:68次