期刊论文详细信息
BMC Microbiology
Fast immunosensing technique to detect Legionella pneumophila in different natural and anthropogenic environments: comparative and collaborative trials
Guillermo Rodríguez4  Eva Baldrich1  Roberto Fernández-Lafuente2  Inmaculada Solís3  Sonia Macián4  Begoña Bedrina4 
[1] Institut de Microelectrònica (IMB-CNM, CSIC), Campus Univ. Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain;Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, Campus UAM-CSIC, Cantoblanco, Madrid, 28049, Spain;Iproma, S.L, Cno.de la Raya 46, Castellón, 12005, Spain;Biótica, Bioquímica Analítica, S.L, Science and Technology Park of Jaume I University, Campus Riu Sec - Espaitec 2, planta baja, Castellón de la Plana, E12071, Spain
关键词: Magnetic particles;    Immunosensing;    Detection;    Legionella;   
Others  :  1143866
DOI  :  10.1186/1471-2180-13-88
 received in 2012-11-15, accepted in 2013-04-16,  发布年份 2013
PDF
【 摘 要 】

Background

Legionellosis is an uncommon form of pneumonia. After a clinical encounter, the necessary antibiotic treatment is available if the diagnosis is made early in the illness. Before the clinical encounter, early detection of the main pathogen involved, Legionella pneumophila, in hazardous environments is important in preventing infectious levels of this bacterium. In this study a qualitative test based on combined magnetic immunocapture and enzyme-immunoassay for the fast detection of Legionella pneumophila in water samples was compared with the standard method, in both comparative and collaborative trials. The test was based on the use of anti-Legionella pneumophila antibodies immobilized on magnetic microspheres. The final protocol included concentration by filtration, resuspension and immunomagnetic capture. The whole assay took less than 1 hour to complete.

Results

A comparative trial was performed against the standard culture method (ISO 11731) on both artificially and naturally contaminated water samples, for two matrices: chlorinated tap water and cooling tower water. Performance characteristics of the test used as screening with culture confirmation resulted in sensitivity, specificity, false positive, false negative, and efficiency of 96.6%, 100%, 0%, 3.4%, and 97.8%, respectively. The detection limit at the level under which the false negative rate increases to 50% (LOD50) was 93 colony forming units (CFU) in the volume examined for both tested matrices. The collaborative trial included twelve laboratories. Water samples spiked with certified reference materials were tested. In this study the coincidence level between the two methods was 95.8%.

Conclusion

Results demonstrate the applicability of this immunosensing technique to the rapid, simple, and efficient detection of Legionella pneumophila in water samples. This test is not based on microbial growth, so it could be used as a rapid screening technique for the detection of L. pneumophila in waters, maintaining the performance of conventional culture for isolation of the pathogen and related studies.

【 授权许可】

   
2013 Bedrina et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150330024408498.pdf 205KB PDF download
【 参考文献 】
  • [1]Helbig JH, Kurtz JB, Pastoris MC, Pelaz C, Luck PC: Antigenic lipopolysaccharide components of Legionella pneumophila recognized by monoclonal antibodies: possibilities and limitations for division of the species into serogroups. J Clin Microbiol 1997, 35:2841-2845.
  • [2]Yu VL, Plouffe JF, Pastoris MC, Stout JE, Schousboe M, Widmer A, Summersgill J, File T, Heath CM, Paterson DL, Chereshsky A: Distribution of Legionella species and serogroups isolated by culture in patients with sporadic community- acquired pneumonia: an international collaborative survey. J Infect Dis 2002, 186:127-128.
  • [3]Tijet N, Tang P, Romilowych M, Duncan C, Ng V, Fisman DN, Jamieson F, Low DE, Guyard C: New endemic Legionella pneumophila serogroup 1 clones, Ontario, Canada. Emerg Infect Dis 2010, 16:447-454.
  • [4]Sabrià M, Campins M: Legionnaires’ Disease: Update on Epidemiology and Management Options. Am J Respir Crit Care Med 2003, 2:235-243.
  • [5]Fields BS, Benson RF, Besser RE: Legionella and Legionnaires’ disease: 25 Years of Investigation. Clin Microbiol Rev 2002, 15:506-526.
  • [6]Fliermans CB, Cherry WB, Orrison LH, Smith SJ, Tison DL, Pope DH: Ecological distribution of Legionella pneumophila. Appl Environ Microbiol 1981, 41:9-16.
  • [7]Colbourne JS, Dennis PJ, Trew RM, Berry G, Vesey G: Legionella and public water supplies. Water Sci Technol 1988, 20:11-20.
  • [8]Steinert M, Hentschel U, Hacker J: Legionella pneumophila: an aquatic microbe goes astray. FEMS Microbiol Rev 2002, 26:149-162.
  • [9]Mampel J, Spirig T, Weber SS, Haagensen JAJ, Molin S, Hilbi H: Planktonic Replication Is Essential for Biofilm Formation by Legionella pneumophila in a Complex Medium under Static and Dynamic Flow Conditions. Appl Environ Microbiol 2006, 72:2885-2895.
  • [10]Ragull S, Garcia-Nuñez M, Pedro-Botet ML, Sopena N, Esteve M, Montenegro R, Sabrià M: Legionella pneumophila in Cooling Towers: Fluctuations in Counts, Determination of Genetic Variability by Pulsed-Field Gel Electrophoresis (PFGE), and Persistence of PFGE Patterns. Appl Environ Microbiol 2007, 73:5382-5384.
  • [11]Wéry N, Bru-Adan V, Minervini C, Delgénes JP, Garrelly L, Godon JJ: Dynamics of Legionella spp. and Bacterial Populations during the Proliferation of L. pneumophila in a Cooling Tower Facility. Appl Environ Microbiol 2008, 74:3030-3037.
  • [12]Moritza MM, Flemminga HC, Wingender J: Integration of Pseudomonas aeruginosa and Legionella pneumophila in drinking water biofilms grown on domestic plumbing materials. Int J Hyg Environ Health 2010, 213:190-197.
  • [13]Bej AK, Mahbubani MH, Atlas RM: Detection of viable Legionella pneumophila in water by polymerase chain reaction and gene probe methods. Appl Environ Microbiol 1991, 57:597-600.
  • [14]García MT, Jones S, Pelaz C, Millar RD, Abu KY: Acanthamoeba polyphaga resuscitates viable non-culturable Legionella pneumophila after disinfection. Environ Microbiol 2007, 9:1267-1277.
  • [15]Alleron L, Merlet N, Lacombe C, Frère J: Long-term survival of Legionella pneumophila in the viable but nonculturable state after monochloramine treatment. Curr Microbiol 2008, 57:497-502.
  • [16]Cunliffe DA: Inactivation of Legionella pneumophila by monochloramine. J Appl Bacteriol 1990, 68:453-459.
  • [17]Kool JL, Carpenter JC, Fields BS: Effect of monochloramine disinfection of municipal drinking water on risk of nosocomial Legionnaires’ disease. Lancet 1999, 353:272-277.
  • [18]Kuchta JM, States SJ, McNamara AM, Wadowsky RM, Yee RB: Susceptibility of Legionella pneumophila to chlorine in tap water. Appl Environ Microbiol 1983, 46:1134-1139.
  • [19]International Organization for Standardization: ISO 11731:1998 Water quality-detection and enumeration of Legionella. Geneva-Switzerland: ; 1998.
  • [20]International Organization for Standardization: ISO 11731–2:2004 Water quality - Detection and enumeration of Legionella - Part 2: Direct membrane filtration method for waters with low bacterial counts. Geneva-Switzerland: ; 2004.
  • [21]Hussong D, Colwell RR, O'Brien M, Weiss E, Pearson AD, Weiner RM, Burge WD: Viable Legionella pneumophila not detectable by culture on agar media. Viable Legionella pneumophila not detected by culture on agar media. Biotechnol 1987, 5:947-950.
  • [22]Yanez MA, Carrasco-Serrano C, Barbera VM, Catalán V: Quantitative Detection of Legionella pneumophila in Water Samples by Immunomagnetic Purification and Real-Time PCR Amplification of the dotA Gene. Appl Environ Microbiol 2005, 71:3433-3441.
  • [23]Yanez MA, Carrasco-Serrano C, Barbera VM, Catalán V: Validation of a new seminested PCR-based detection method for Legionella pneumophila. J Microbiol Meth 2007, 70:214-217.
  • [24]Dusserre E, Ginevra C, Hallier-soulier S, Festoc G, Etienne J, Jarraud S: A PCR-Based Method for Monitoring Legionella pneumophila in Water Samples Detects Viable but Noncultivable Legionellae That Can Recover Their Cultivability. Appl Environ Microbiol 2008, 74:4817-4824.
  • [25]Buchbinder S, Trebesius K, Heesemann J: Evaluation of detection of Legionella spp. in water samples by fluorescence in situ hybridization, PCR amplification and bacterial culture. International J Med Microbiol 2002, 292:241-245.
  • [26]Amann R, Ludwig W: Ribosomal RNA-targeted nucleic acid probes for studies in microbial ecology. FEMS Microbiol Rev 2000, 24:555-565.
  • [27]Lazcka O, Del Campo FJ, Muñoz X: Pathogen detection: A perspective of traditional methods and biosensors. Biosens Bioelectron 2007, 22:1205-1217.
  • [28]Brooks BW, Devenish J, Lutze-Wallace CL, Milnes D, Robertson RH, Berlie-Surujballi G: Evaluation of a monoclonal antibody-based enzyme-linked immunosorbent assay for detection of Campylobacter fetus in bovine preputial washing and vaginal mucus samples. Vet Microbiol 2004, 103:77-84.
  • [29]Satoh W, Nakata M, Yamamoto H, Ezaki T, Hiramatsu K: Enumeration of Legionella CFU by colony hybridization using specific DNA probes. Appl Environ Microbiol 2002, 68:6466-6470.
  • [30]Aurell H, Catala P, Farge P, Wallet F, Le Brun M, Helbig JH, Jarraud S, Lebaron P: Rapid detection and enumeration of Legionella pneumophila in hot water systems by solid-phase cytometry. Appl Environ Microbiol 2004, 70:1651-1657.
  • [31]Olsvik Ø, Popovic T, Skjerve E, Cudjoe KS, Hornes E, Ugelstad J, Uhlen M: Magnetic separation techniques in diagnostic microbiology. Clin Microbiol Rev 1994, 7:43-54.
  • [32]Gehring AG, Irwin PL, Reed SA, Tu SI, Andreotti PE, Akhavan-Tafti H, Handley RS: Enzyme-linked immunomagnetic chemiluminescent detection of Escherichia coli O157:H7. J Immunol Meth 2004, 293:97-106.
  • [33]Füchslin HP, Kötzsch S, Egli T: Rapid and quantitative detection of Legionella pneumophila applying immunomagnetic separation and flow cytometry. Cytometry A 2010, 77(3):264-274.
  • [34]Keserue HA, Baumgartner A, Felleisen R, Egli T: Rapid detection of total and viable Legionella pneumophila in tap water by immunomagnetic separation, double fluorescent staining and flow cytometry. Microb Biotechnol 2012, 5:753-763.
  • [35]Rodríguez G, Bedrina B, Jiménez M: Validation of the Legipid® Bioalarm Legionella Assay. J AOAC Int 2012, 95:1440-1451.
  • [36]Borella P, Montagna MT, Stampi S, Stancanelli G, Romano-Spica V, Triassi M, Marchesi I, Bargellini A, Tatò D, Napoli C, Zanetti F, Leoni E, Moro M, Scaltriti S: Ribera D'Alcalà G, Santarpia R, Boccia S: Legionella Contamination in Hot Water of Italian Hotels. Appl Environ Microbiol 2005, 71:5805-5813.
  • [37]Association française de normalisation (AFNOR): Application à l’analyse microbiologique de l’eau, Protocole de Validation d'une méthode alternative commerciale par rapport à une méthode de référence. France: ; 2010.
  • [38]NordVal: Protocol for the validation of alternative microbiological methods. Oslo-Norway: ; 2009.
  • [39]International Organization for Standardization: ISO/TR 13843:2000(E) Water quality – Guidance on validation of microbiological methods. Geneva-Switzerland: ; 2000.
  • [40]Feldsine P, Abeyta C, Andrews WH: AOAC International Methods Committee Guidelines for Validation of Qualitative and Quantitative Food Microbiological Official Methods of Analysis. J AOAC Int 2002, 85:1187-1200.
  • [41]International Laboratory Accreditation Cooperation: ILAC- G13:08/2007 ILAC Guidelines for Requirements for the Competence of Provides of Proficiency Testing Schemes. Silverwater-Australia: ; 2007.
  • [42]International Organization for Standardization: ISO5725-6:1994 Accuracy (trueness and precision) of measurement methods and results-Part 6: Use in practice of accuracy values. Geneva-Switzerland: ; 1994.
  • [43]International Organization for Standardization: ISO 8199:2005 Water quality-General guidance on the enumeration of micro-organisms by culture. Geneva-Switzerland: ; 2005.
  • [44]International Organization for Standardization: ISO 13528:2005 Statistical methods for use in proficiency testing by interlaboratory comparisons. Geneva-Switzerland: ; 2005.
  • [45]International Organization for Standardization: ISO 7218:2007 Microbiology of food and animal feeding stuffs-General requirements and guidance for microbiological examinations. Geneva-Switzerland: ; 2007.
  • [46]International Organization for Standardization: ISO/IEC 17043:2010 Conformity assessment-General requirements for proficiency testing. Geneva-Switzerland: ; 2010.
  • [47]National Accreditation Entity (ENAC): CGA-ENAC-PPI:2003 General criteria for accreditation of testing proficiency schemes suppliers according UNE 66543–1 and ILAC-G13 guide. Madrid-Spain: ; 2003.
  • [48]National Accreditation Entity (ENAC): G-ENAC-14: 2008 Guide for participation in intercomparison exercises. Madrid-Spain: ; 2008.
  • [49]Spanish Association for Standarization and Certification (AENOR): UNE 66543–1:1999 IN. 1999 Proficiency Testing By Interlaboratory Comparisons. Part 1: Development and Operation of Proficiency Testing Schemes. Madrid-Spain: ; 1999.
  • [50]Boulanger CA, Edelstein PH: Precision and Accuracy of Recovery of Legionella pneumophila from Seeded Tap Water by Filtration and Centrifugation. Appl Environ Microbiol 1995, 61:1805-1809.
  文献评价指标  
  下载次数:4次 浏览次数:8次