期刊论文详细信息
BMC Genetics
Improving accuracy of genomic prediction by genetic architecture based priors in a Bayesian model
Zhe Zhang2  Zanmou Chen1  Hao Zhang1  Yuanyu Luo1  Guang Xiao1  Jinlong He1  Jiaqi Li1  Ning Gao2 
[1] National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China;Department of Animal Sciences, Animal Breeding and Genetics Group, Georg-August-Universität Göttingen, Göttingen 37075, Germany
关键词: Genetic Architecture;    Priors;    Bayesian approaches;    Genomic selection;   
Others  :  1228882
DOI  :  10.1186/s12863-015-0278-9
 received in 2015-05-23, accepted in 2015-10-08,  发布年份 2015
【 摘 要 】

Background

In recent years, with the development of high-throughput sequencing technology and the commercial availability of genotyping bead chips, more attention is being directed towards the utilization of abundant genetic markers in animal and plant breeding programs, human disease risk prediction and personal medicine. Several useful approaches to accomplish genomic prediction have been developed and used widely, but still have room for improvement to gain more accuracy. In this study, an improved Bayesian approach, termed BayesBπ, which differs from the original BayesB in priors assigning, is proposed. An effective method for calculating the locus-specific π by converting p-values from association between SNPs and traits’ phenotypes is given and systemically validated using a German Holstein dairy cattle population. Furthermore, the new method is applied to a loblolly pine (Pinus taeda) dataset.

Results

Compared with the original BayesB, BayesBπ can improve the accuracy of genomic prediction up to 7.62 % for milk fat percentage, a trait which shows a large effect of quantitative trait loci (QTL). For milk yield, which is controlled by small to moderate effect genes, the accuracy of genomic prediction can be improved up to 4.94 %. For somatic cell score, of which no large effect QTL has been reported, GBLUP performs better than Bayesian methods. BayesBπ outperforms BayesCπ in 10 out of 12 scenarios in the dairy cattle population, especially in small to moderate population sizes where accuracy of BayesCπ are dramatically low. Results of the loblolly pine dataset show that BayesBπ outperforms BayesB in 14 out of 17 traits and BayesCπ in 8 out of 17 traits, respectively.

Conclusions

For traits controlled by large effect genes, BayesBπ can improve the accuracy of genomic prediction and unbiasedness of BayesB in moderate size populations. Knowledge of traits’ genetic architectures can be integrated into practices of genomic prediction by assigning locus-specific priors to markers, which will help Bayesian approaches perform better in variable selection and marker effects shrinkage.

【 授权许可】

   
2015 Gao et al.

附件列表
Files Size Format View
Fig. 2. 23KB Image download
Fig. 1. 63KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

【 参考文献 】
  • [1]Vachon CM, van Gils CH, Sellers TA, Ghosh K, Pruthi S, Brandt KR, et al. Mammographic density, breast cancer risk and risk prediction. Breast Cancer Res. 2007, 9(6):doi:10.1186/bcr1829.
  • [2]Jostins L, Barrett JC. Genetic risk prediction in complex disease. Hum Mol Genet. 2011; 20:R182-R188.
  • [3]Domchek SM, Eisen A, Calzone K, Stopfer J, Blackwood A, Weber BL. Application of breast cancer risk prediction models in clinical practice. J Clin Oncol. 2003; 21(4):593-601.
  • [4]Bonassi S, Au WW. Biomarkers in molecular epidemiology studies for health risk prediction. Mutat Res Rev Mutat Res. 2002; 511(1):73-86.
  • [5]Bouquet A, Juga J. Integrating genomic selection into dairy cattle breeding programmes: a review. Animal. 2013; 7(5):705-713.
  • [6]Lin Z, Hayes BJ, Daetwyler HD. Genomic selection in crops, trees and forages: a review. Crop & Pasture Science. 2014; 65(11):1177-1191.
  • [7]Hayes BJ, Cogan NOI, Pembleton LW, Goddard ME, Wang J, Spangenberg GC, et al. Prospects for genomic selection in forage plant species. Plant Breed. 2013;132(2):133–43.
  • [8]Zhao Y, Mette MF, Reif JC. Genomic selection in hybrid breeding. Plant Breed. 2015; 134(1):1-10.
  • [9]Stock KF, Reents R. Genomic Selection: Status in Different Species and Challenges for Breeding. Reprod Domest Anim. 2013; 48:2-10.
  • [10]de los Campos G, Hickey JM, Pong-Wong R, Daetwyler HD, Calus MPL. Whole-Genome Regression and Prediction Methods Applied to Plant and Animal Breeding. Genetics. 2013; 193(2):327.
  • [11]Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide dense marker maps. Genetics. 2001; 157(4):1819-1829.
  • [12]de los Campos G, Vazquez AI, Fernando R, Klimentidis YC, Sorensen D: Prediction of complex human traits using the genomic best linear unbiased predictor. Plos Genetics. 2013, 9(7):doi:10.1371/journal.pgen.1003608.
  • [13]Ober U, Ayroles JF, Stone EA, Richards S, Zhu D, Gibbs RA, et al: Using whole-genome sequence data to predict quantitative trait phenotypes in Drosophila melanogaster. Plos Genetics 2012, 8(5):doi:10.1371/journal.pgen.1002685.
  • [14]Luan T, Woolliams JA, Lien S, Kent M, Svendsen M, Meuwissen THE. The Accuracy of Genomic Selection in Norwegian Red Cattle Assessed by Cross-Validation. Genetics. 2009; 183(3):1119-1126.
  • [15]Erbe M, Hayes BJ, Matukumalli LK, Goswami S, Bowman PJ, Reich CM, et al. Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels. J Dairy Sci. 2012;95(7):4114–29.
  • [16]Hayes BJ, Bowman PJ, Chamberlain AC, Verbyla K, Goddard ME. Accuracy of genomic breeding values in multi-breed dairy cattle populations. Genet Sel Evol. 2009, 41:doi:10.1186/1297-9686-1141-1151
  • [17]Verbyla KL, Hayes BJ, Bowman PJ, Goddard ME. Accuracy of genomic selection using stochastic search variable selection in Australian Holstein Friesian dairy cattle. Genet Res. 2009; 91(5):307-311.
  • [18]Morota G, Abdollahi-Arpanahi R, Kranis A, Gianola D: Genome-enabled prediction of quantitative traits in chickens using genomic annotation. BMC Genomics 2014, 15:doi:10.1186/1471-2164-1115-1109
  • [19]Slack-Smith A, Kinghorn BP, van der Werf JHJ. Accuracy of genomic selection in predicting carcass traits in meat sheep. Anim Prod Sci. 2010; 50(11-12):XIII-XIII.
  • [20]Christensen OF, Madsen P, Nielsen B, Ostersen T, Su G. Single-step methods for genomic evaluation in pigs. Animal. 2012; 6(10):1565-1571.
  • [21]Daetwyler HD, Hickey JM, Henshall JM, Dominik S, Gredler B, van der Werf JHJ, et al. Accuracy of estimated genomic breeding values for wool and meat traits in a multi-breed sheep population. Anim Prod Sci. 2010;50(11-12):1004–10.
  • [22]Zhao Y, Gowda M, Liu W, Wuerschum T, Maurer HP, Longin FH, et al. Accuracy of genomic selection in European maize elite breeding populations. Theor Appl Genet. 2012;124(4):769–76.
  • [23]Heffner EL, Jannink J-L, Iwata H, Souza E, Sorrells ME. Genomic Selection Accuracy for Grain Quality Traits in Biparental Wheat Populations. Crop Sci. 2011; 51(6):2597-2606.
  • [24]Zhong S, Dekkers JCM, Fernando RL, Jannink J-L. Factors Affecting Accuracy From Genomic Selection in Populations Derived From Multiple Inbred Lines: A Barley Case Study. Genetics. 2009; 182(1):355-364.
  • [25]Resende Jr MFR, Munoz P, Resende MDV, Garrick DJ, Fernando RL, Davis JM, et al. Accuracy of Genomic Selection Methods in a Standard Data Set of Loblolly Pine (Pinus taeda L.). Genetics. 2012;190(4):1503.
  • [26]Resende Jr MFR, Munoz P, Acosta JJ, Peter GF, Davis JM, Grattapaglia D, et al. Accelerating the domestication of trees using genomic selection: accuracy of prediction models across ages and environments. New Phytol. 2012;193(3):617–24.
  • [27]Sonesson AK, Meuwissen THE: Testing strategies for genomic selection in aquaculture breeding programs. Genet Sel Evol. 2009, 41:doi:10.1186/1297-9686-1141-1137
  • [28]Meuwissen T, Hayes B, Goddard M. Accelerating Improvement of Livestock with Genomic Selection. Annu Rev Anim Biosci. 2013; 1:221-237.
  • [29]Zhang Z, Zhang Q, Ding X. Advances in genomic selection in domestic animals. Chin Sci Bull. 2011; 56(25):2655-2663.
  • [30]VanRaden PM. Efficient Methods to Compute Genomic Predictions. J Dairy Sci. 2008; 91(11):4414-4423.
  • [31]Habier D, Fernando RL, Kizilkaya K, Garrick DJ. Extension of the bayesian alphabet for genomic selection. BMC Bioinformatics 2011, 12:doi:10.1186/1471-2105-1112-1186
  • [32]Xu SZ. Estimating polygenic effects using markers of the entire genome. Genetics. 2003; 163(2):789-801.
  • [33]ter Braak CJF, Boer MP, Bink M. Extending Xu’s Bayesian model for estimating polygenic effects using markers of the entire genome. Genetics. 2005; 170(3):1435-1438.
  • [34]Brondum RF, Su G, Lund MS, Bowman PJ, Goddard ME, Hayes BJ. Genome position specific priors for genomic prediction. BMC Genomics. 2012, 13:doi:10.1186/1471-2164-1113-1543.
  • [35]Gianola D, de los Campos G, Hill WG, Manfredi E, Fernando R. Additive Genetic Variability and the Bayesian Alphabet. Genetics. 2009; 183(1):347-363.
  • [36]Knurr T, Laara E, Sillanpaa MJ. Genetic analysis of complex traits via Bayesian variable selection: the utility of a mixture of uniform priors. Genet Res. 2011; 93(4):303-318.
  • [37]Knurr T, Laara E, Sillanpaa MJ. Impact of prior specifications in a shrinkage-inducing Bayesian model for quantitative trait mapping and genomic prediction. Genet Sel Evol. 2013, 45:doi:10.1186/1297-9686-1145-1124.
  • [38]Legarra A, Robert-Granie C, Croiseau P, Guillaume F, Fritz S. Improved Lasso for genomic selection. Genet Res. 2011; 93(1):77-87.
  • [39]de los Campos G, Naya H, Gianola D, Crossa J, Legarra A, Manfredi E, et al. Predicting Quantitative Traits With Regression Models for Dense Molecular Markers and Pedigree. Genetics. 2009;182(1):375–85.
  • [40]Daetwyler HD, Pong-Wong R, Villanueva B, Woolliams JA. The Impact of Genetic Architecture on Genome-Wide Evaluation Methods. Genetics. 2010; 185(3):1021-1031.
  • [41]Zhang Z, Ding X, Liu J, Zhang Q, de Koning DJ. Accuracy of genomic prediction using low-density marker panels. J Dairy Sci. 2011; 94(7):3642-3650.
  • [42]Zhang Z, Liu J, Ding X, Bijma P, de Koning D-J, Zhang Q. Best linear unbiased prediction of genomic breeding values using a trait-specific marker-derived relationship matrix. PLos One. 2010, 5(9):doi:10.1371/journal.pone.0012648.
  • [43]Zhang Z, Ober U, Erbe M, Zhang H, Gao N, He J, et al. Improving the accuracy of whole genome prediction for complex traits using the results of genome wide association studies. PLos One. 2014, 9(3):doi:10.1371/journal.pone.0093017.
  • [44]Wang H, Misztal I, Aguilar I, Legarra A, Fernando RL, Vitezica Z, et al. Genome-wide association mapping including phenotypes from relatives without genotypes in a single-step (ssGWAS) for 6-week body weight in broiler chickens. Front Genet. 2014, 5:doi:10.3389/fgene.2014.00134.
  • [45]Zhang Z, Erbe M, He J, Ober U, Gao N, Zhang H, et al. Accuracy of whole-genome prediction using a genetic architecture-enhanced variance-covariance matrix. G3 (Bethesda, Md). 2015;5(4):615–27.
  • [46]Grisart B, Farnir F, Karim L, Cambisano N, Kim JJ, Kvasz A, et al. Genetic and functional confirmation of the causality of the DGAT1 K232A quantitative trait nucleotide in affecting milk yield and composition. Proc Natl Acad Sci U S A. 2004;101(8):2398–403.
  • [47]Drinkwater NR, Gould MN. The Long Path from QTL to Gene. Plos Genetics. 2012; 8(9):e1002975.
  • [48]Leon-Novelo L, Casella G. Prior influence in linear regression when the number of covariates increases to infinity. Stat Probab Lett. 2012; 82(3):438-445.
  • [49]Nadaf J, Riggio V, Yu T-P, Pong-Wong R. Effect of the prior distribution of SNP effects on the estimation of total breeding value. BMC Proc. 2012;6 Suppl 2:S6–6.
  • [50]Lehermeier C, Wimmer V, Albrecht T, Auinger H-J, Gianola D, Schmid VJ, et al. Sensitivity to prior specification in Bayesian genome-based prediction models. Stat Appl Genet Mol Biol. 2013;12(3):375–91.
  • [51]Gianola D. Priors in Whole-Genome Regression: The Bayesian Alphabet Returns. Genetics. 2013; 194(3):573-596.
  • [52]Meuwissen T, Goddard M. Accurate Prediction of Genetic Values for Complex Traits by Whole-Genome Resequencing. Genetics. 2010; 185(2):623-U338.
  • [53]Fernando RL, Nettleton D, Southey BR, Dekkers JCM, Rothschild MF, Soller M. Controlling the proportion of false positives in multiple dependent tests. Genetics. 2004; 166(1):611-619.
  • [54]Hu Z-L, Fritz ER, Reecy JM. AnimalQTLdb: a livestock QTL database tool set for positional QTL information mining and beyond. Nucleic Acids Res. 2007; 35:D604-D609.
  • [55]Kadarmideen HN. Genomics to systems biology in animal and veterinary sciences: Progress, lessons and opportunities. Livest Sci. 2014; 166:232-248.
  • [56]Matukumalli LK, Lawley CT, Schnabel RD, Taylor JF, Allan MF, Heaton MP, et al: Development and characterization of a high density SNP genotyping assay for cattle. PLos One. 2009, 4(4):doi:10.1371/journal.pone.0005350.
  • [57]Eckert AJ, van Heerwaarden J, Wegrzyn JL, Nelson CD, Ross-Ibarra J, Gonzalez-Martinez SC, et al. Patterns of Population Structure and Environmental Associations to Aridity Across the Range of Loblolly Pine (Pinus taeda L., Pinaceae). Genetics. 2010;185(3):969–82.
  • [58]Perez P, de los Campos G. Genome-Wide Regression and Prediction with the BGLR Statistical Package. Genetics. 2014; 198(2):483-U463.
  文献评价指标  
  下载次数:39次 浏览次数:40次