期刊论文详细信息
BMC Genetics
Evidence and consequences of self-fertilisation in the predominantly outbreeding forage legume Onobrychis viciifolia
Roland Kölliker1  Sonja Reinhard1  Franco Widmer1  Achim Walter2  Christoph Grieder3  Katharina Kempf2 
[1] Molecular Ecology, Agroscope Reckenholz ISS, Reckenholzstrasse 191, Zurich, 8046, Switzerland;Crop Science, ETH Zurich, Universitätstrasse 2, Zurich, 8092, Switzerland;Fodder Plant Breeding, Agroscope Reckenholz ISS, Reckenholzstrasse 191, Zurich, 8046, Switzerland
关键词: Outbreeding;    Tetraploidy;    SSR marker;    SRAP marker;    Inbreeding depression;    Self-fertilisation;    Sainfoin;    Onobrychis viciifolia;   
Others  :  1228885
DOI  :  10.1186/s12863-015-0275-z
 received in 2015-07-06, accepted in 2015-10-02,  发布年份 2015
【 摘 要 】

Background

Sainfoin (Onobrychis viciifolia) is a promising alternative forage plant of good quality, moderate nutrient demand and a high content of polyphenolic compounds. Its poor adoption is caused by the limited availability of well performing varieties. Sainfoin is characterised as tetraploid and mainly outcrossing, but the extent of self-fertilisation and its consequences was not investigated so far. This study aimed at assessing the rate of self-fertilisation in sainfoin under different pollination regimes and at analysing the consequences on plant performance in order to assist future breeding efforts.

Methods

The self-fertilisation rate was assessed in three sainfoin populations with artificially directed pollination (ADP) and in three populations with non-directed pollination (NDP). Dominant SRAP (sequence-related amplified polymorphism) and codominant SSR (simple sequence repeats) markers were used to detect self-fertilisation in sainfoin for the first time based on molecular marker data.

Results

High rates of self-fertilisation of up to 64.8 % were observed for ADP populations in contrast to only up to 3.9 % for NDP populations. Self-fertilisation in ADP populations led to a reduction in plant height, plant vigour and, most severely, for seed yield.

Conclusions

Although sainfoin is predominantly outcrossing, self-fertilisation can occur to a high degree under conditions of limited pollen availability. These results will influence future breeding efforts because precautions have to be taken when crossing breeding material. The resulting inbreeding depression can lead to reduced performance in self-fertilised offspring. Nevertheless the possibility of self-fertilisation also offers new ways for hybrid breeding based on the development of homogenous inbred lines.

【 授权许可】

   
2015 Kempf et al.

附件列表
Files Size Format View
Fig. 2. 70KB Image download
Fig. 1. 46KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

【 参考文献 】
  • [1]Luescher A, Mueller-Harvey I, Soussana JF, Rees RM, Peyraud JL. Potential of legume-based grassland-livestock systems in Europe: a review. Grass Forage Sci. 2014; 69(2):206-28.
  • [2]Hayot Carbonero C, Mueller-Harvey I, Brown TA, Smith L. Sainfoin (Onobrychis viciifolia): a beneficial forage legume. Plant Genet Resour. 2011; 9(1):70-85.
  • [3]Dentinho MTP, Belo AT, Bessa RJB. Digestion, ruminal fermentation and microbial nitrogensupply in sheep fed soybean meal treated with Cistus ladanifer L. tannins. Small Ruminant Res. 2014; 119:57-64.
  • [4]Theodoridou K, Aufrere J, Andueza D, Le Morvan A, Picard F, Pourrat J et al.. Effects of condensed tannins in wrapped silage bales of sainfoin (Onobrychis viciifolia) on in vivo and in situ digestion in sheep. Animal. 2012; 6(2):245-53.
  • [5]Mezzomo R, Paulino PVR, Detmann E, Valadares Filho SC, Paulino MF, Monnerat JPIS et al.. Influence of condensed tannin on intake, digestibility, and efficiency of protein utilization in beef steers fed high concentrate diet. Livest Sci. 2011; 141(1):1-11.
  • [6]Paolini V, Frayssines A, De La Farge F, Dorchies P, Hoste H. Effects of condensed tannins on established populations and on incoming larvae of Trichostrongylus colubriformis and Teladorsagia circumcincta in goats. Vet Res. 2003; 34(3):331-9.
  • [7]Sacristan MD. Estudios citotaxonómicos sobre el género Onobrychis (L). Adanson con referencia especial a la citogenética de la esparceta (O. viciifolia Scop.). Anales de la estacion experimental de aula dei, Zaragoza, Spain; 1965.
  • [8]De Vicente MC, Arus P. Tetrasomic inheritance of isozymes in sainfoin (Onobrychis viciaefolia Scop.). J Hered. 1996; 87(1):54-62.
  • [9]Zarrabian M, Majidi MM, Ehtemam MH. Genetic diversity in a worldwide collection of sainfoin using morphological, anatomical, and molecular markers. Crop Sci. 2013; 53(6):2483-96.
  • [10]Richards KW, Edwards PD. Density, diversity, and efficiency of pollinators of sainfoin, Onobrychis viciaefolia scop. Can Entomol. 1988; 120(12):1085-100.
  • [11]Tasei JN. Légumineuses fourragères et protéagineuses. In: Pollinisation et productions végétales. Pessan P, Louveaux J, editors. INRA, Paris, France; 1984: p.285-7.
  • [12]Bennett SJ, Francis C, Reid B. Minor and Under-utilised Legumes. In: Plant Genetic Resources of Legumes in the Mediterranean. Maxted N, Bennett SJ, editors. Kluwer Academic Publishers, Dordrecht, The Netherlands; 2001: p.219-20.
  • [13]Knuth P. Handbook of Flower Pollination. Claredon Press, Oxford, UK; 1906.
  • [14]Özbek H. Sainfoin, Onobrychis viciifolia Scop.: an important bee plant. Uludag Bee J. 2011; 11(2):51-62.
  • [15]Demdoum S. Caracterización agronómica, genética y composición quimica de una colección de variedades de esparceta [PhD thesis]. University of Lleida, Lleida, Spain; 2012.
  • [16]Thomson JR. Cross- and self-fertility in sainfoin. Ann Appl Biol. 1938; 25(4):695-704.
  • [17]Knipe WJ, Carleton AE. Estimates of the percentage of self-and cross-pollination in sainfoin (Onobrychis viciifolia scop.). Crop Sci. 1972; 12(4):520-2.
  • [18]Negri V. Caratteristiche fiorali e quota di allegagione in popolazioni di ginestrino, lupinella e sulla in presenza e in assenza di pronubi. Sementi Elette. 1984; 30(3):13-7.
  • [19]Sheehy JE, Popple SC. Photosynthesis, water relations, temperature and canopy structure as factors influencing the growth of sainfoin (Onobrychis viciifolia Scop.) and lucerne (Medicago sativa L.). Ann Bot. 1981; 48:113-28.
  • [20]Simonnet X, Carlen C. Esparsette (Onobrychis viciifolia) reich an kondensierten Tanninen: Pflanzenbau und Qualität. pdf. Mediplant, Contheyn, Switzerland; 2011.
  • [21]Liu Z, Baines RN, Lane GPF, Davies WP. Survival of plants of common sainfoin (Onobrychis viciifolia Scop.) in competition with two companion grass species. Grass Forage Sci. 2010; 65(1):11-4.
  • [22]European Commission. Plant variety catalogues & databases. 2015. http://ec.europa.eu/food/plant/plant_propagation_material/plant_variety_catalogues_databases/index_en.htm. Accessed 04.10.2015.
  • [23]Hayot Carbonero C. Sainfoin (Onobrychis viciifolia), a forage legume with great potential for sustainable agriculture, an insight on its morphological, agronomical, cytological and genetic characterisation [PhD thesis]. University of Manchester, Manchester, UK; 2011.
  • [24]Moll RH, Salhuana WS, Robinson HF. Heterosis and genetic diversity in variety crosses of maize. Crop Sci. 1962; 2:197-8.
  • [25]Helmerick RH, Finkner RE, Doxtator CW. Variety crosses in sugar beets (Beta vulgaris L.) I. Expression of heterosis and combining ability. J Sugar Beet Res. 1963; 12:573-84.
  • [26]Geiger HH, Wahle G. Struktur der Heterosis von Komplexmerkmalen bei Winterroggen-Einfachhybriden. Z Pflanzenzücht. 1978; 80:198-210.
  • [27]Jain SK. The evolution of inbreeding in plants. Annu Rev Ecol Evol Syst. 1976; 7:469-95.
  • [28]Li G, Quiros CF. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet. 2001; 103(2-3):455-61.
  • [29]Boller B, Günter S. Die Erhaltung der Esparsette (Onobrychis viciifolia) NAP 03-38. Thun, Switzerland: Eric Schweizer AG; 2009.
  • [30]Azuhnwi BN, Boller B, Martens M, Dohme-Meier F, Ampuero S, Guenter S et al.. Morphology, tannin concentration and forage value of 15 swiss accessions of sainfoin (Onobrychis viciifolia Scop.) as influenced by harvest time and cultivation site. Grass Forage Sci. 2011; 66(4):474-87.
  • [31]Badoux S. Etude des caractères morphologiques, physiologiques et agronomiques de populations d’ esparcette (Onobrychis spp.) [PhD thesis]. ETH Zurich, Zurich, Switzerland; 1964.
  • [32]Internationale Vorschriften für die Prüfung von Saatgut 2009. Bassersdorf, Switzerland; 2009.
  • [33]Curtis T. Rural Economics. In: Groove house sch, editor. The London encyclopaedia, or, Universal dictionary of science, art, literature, and practical mechanics. Islington, UK: Thomas Tegg; 1829. p. 124-5.
  • [34]Demdoum S, Munoz F, Delgado I, Valderrabano J, Wuensch A. EST-SSR cross-amplification and genetic similarity in Onobrychis genus. Genet Resour Crop Evol. 2012; 59(2):253-60.
  • [35]Brazeau DA, Gleason DF, Morgan ME. Self-fertilization in brooding hermaphroditic Caribbean corals: Evidence from molecular markers. J Exp Mar Biol Ecol. 1998; 231(2):225-38.
  • [36]Clegg MT, Kobayashi M, Lin JZ. The use of molecular markers in the management and improvement of avocado (Persea americana Mill.). Rev Chapingo Ser Hortic. 1999; 5:227-33.
  • [37]Milligan BG, McMurry CK. Dominant vs. codominant genetic markers in the estimation of male mating success. Mol Ecol. 1993; 2:275-83.
  • [38]Bean EW, Yok-Hwa C. An analysis of the growth of inbred progeny of Lolium. J Agric Sci. 1972; 79(01):147-53.
  • [39]Pauly L, Flajoulot S, Garon J, Julier B, Beguier V, Barre P. Detection of favorable alleles for plant height and crown rust tolerance in three connected populations of perennial ryegrass (Lolium perenne L.). Theor Appl Genet. 2012; 124(6):1139-53.
  • [40]Taylor NL, Anderson MK. Maintenance of parental lines for hybrid red clover. Crop Sci. 1980; 20:367-9.
  • [41]Shull GH. Duplicate genes for capsule-form in Bursa bursa-pastoris. Z Indukt Abstamm Vererbungsl. 1914; 12(1):97-149.
  • [42]Posselt UK. Breeding Autotetraploids. In: Fodder Crops and Amenity Grasses. Boller B, Posselt UK, Veronesi F, editors. Springer Science + Business Media, New York, USA; 2010: p.77-96.
  • [43]Bingham ET, Groose RW, Woodfield DR, Kidwell KK. Complementary gene interactions in alfalfa are greater in autotetraploids than diploids. Crop Sci. 1994; 34(4):823-9.
  • [44]Gallais A. Quantitative genetics and breeding methods in autopolyploid plants. INRA, Paris, France; 2003.
  • [45]Ozimec B, Husband BC. Effect of recurrent selfing on inbreeding depression and mating system evolution in an autopolyploid plant. Evolution. 2011; 65(7):2038-49.
  • [46]Galloway LF, Etterson JR. Inbreeding depression in an autotetraploid herb: a three cohort field study. New Phytol. 2007; 173(2):383-92.
  • [47]Gallais A. An analysis of heterosis vs. inbredding effects with an autotetraploid cross-fertilized plant: Medicago sativa L. Genetics. 1984; 106(1):123-37.
  • [48]Alonso-Blanco C, Blankestijn-de Vries H, Hanhart CJ, Koornneef M. Natural allelic variation at seed size loci in relation to other life history traits of Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1999; 96(8):4710-7.
  • [49]Dechaine JM, Brock MT, Weinig C. QTL architecture of reproductive fitness characters in Brassica rapa. BMC Plant Biol. 2014; 14:66-78. BioMed Central Full Text
  • [50]Kumar J, van Rheenen H. A major gene for time of flowering in chickpea. J Hered. 2000; 91(1):67-8.
  • [51]Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C et al.. The genetic architecture of maize flowering time. Science. 2009; 325(5941):714-8.
  文献评价指标  
  下载次数:4次 浏览次数:10次