| BMC Genomics | |
| Mutations upstream of fabI in triclosan resistant Staphylococcus aureus strains are associated with elevated fabI gene expression | |
| Marco R Oggioni8  Stephen L Leib4  Carlo R Largiadèr5  Ian Morrissey1  Daniel R Knight7  Lucilla Baldassarri6  Maria Laura Ciusa3  Leonardo Furi3  Denis Grandgirard2  | |
| [1] Current address: IHMA Europe Sa’rl, Epalinges, Switzerland;Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland;LA.M.M.B., Dip. Biotecnologie Mediche, Università di Siena, Siena, Italy;Biology Division, Spiez Laboratory, Federal Office for Civil Protection FOCP, Spiez, Switzerland;Institute of Clinical Chemistry, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland;Istituto Superiore di Sanità, Roma, Italy;Current address: The University of Western Australia, Nedlands, WA, Australia;Department of Genetics, University of Leicester, Leicester, UK | |
| 关键词: Promoter mutation; Cross-resistance; Microarray; fabI; Triclosan; Resistance; Biocide; | |
| Others : 1177573 DOI : 10.1186/s12864-015-1544-y |
|
| received in 2014-05-01, accepted in 2015-04-17, 发布年份 2015 | |
PDF
|
|
【 摘 要 】
Background
The enoyl-acyl carrier protein (ACP) reductase enzyme (FabI) is the target for a series of antimicrobial agents including novel compounds in clinical trial and the biocide triclosan. Mutations in fabI and heterodiploidy for fabI have been shown to confer resistance in S. aureus strains in a previous study. Here we further determined the fabI upstream sequence of a selection of these strains and the gene expression levels in strains with promoter region mutations.
Results
Mutations in the fabI promoter were found in 18% of triclosan resistant clinical isolates, regardless the previously identified molecular mechanism conferring resistance. Although not significant, a higher rate of promoter mutations were found in strains without previously described mechanisms of resistance. Some of the mutations identified in the clinical isolates were also detected in a series of laboratory mutants. Microarray analysis of selected laboratory mutants with fabI promoter region mutations, grown in the absence of triclosan, revealed increased fabI expression in three out of four tested strains. In two of these strains, only few genes other than fabI were upregulated. Consistently with these data, whole genome sequencing of in vitro selected mutants identified only few mutations except the upstream and coding regions of fabI, with the promoter mutation as the most probable cause of fabI overexpression. Importantly the gene expression profiling of clinical isolates containing similar mutations in the fabI promoter also showed, when compared to unrelated non-mutated isolates, a significant up-regulation of fabI.
Conclusions
In conclusion, we have demonstrated the presence of C34T, T109G, and A101C mutations in the fabI promoter region of strains with fabI up-regulation, both in clinical isolates and/or laboratory mutants. These data provide further observations linking mutations upstream fabI with up-regulated expression of the fabI gene.
【 授权许可】
2015 Grandgirard et al.; licensee BioMed Central.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150502025014729.pdf | 640KB | ||
| Figure 1. | 19KB | Image |
【 图 表 】
Figure 1.
【 参考文献 】
- [1]Albanesi D, Reh G, Guerin ME, Schaeffer F, Debarbouille M, Buschiazzo A, et al.: Structural basis for feed-forward transcriptional regulation of membrane lipid homeostasis in Staphylococcus aureus. PLoS Pathog 2013, 9:e1003108.
- [2]Bailey AM, Constantinidou C, Ivens A, Garvey MI, Webber MA, Coldham N, et al.: Exposure of Escherichia coli and Salmonella enterica serovar Typhimurium to triclosan induces a species-specific response, including drug detoxification. J Antimicrob Chemother 2009, 64:973-85.
- [3]Banerjee A, Dubnau E, Quemard A, Balasubramanian V, Um KS, Wilson T, et al.: inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 1994, 263:227-30.
- [4]Bayston R, Ashraf W, Smith T: Triclosan resistance in meticillin-resistant Staphylococcus aureus expressed as small colony variants: a novel mode of evasion of susceptibility to antiseptics. J Antimicrob Chemother 2007, 59:848-53.
- [5]Brenwald NP, Fraise AP: Triclosan resistance in methicillin-resistant Staphylococcus aureus (MRSA). J Hosp Infect 2003, 55:141-4.
- [6]Chang A, Schiebel J, Yu W, Bommineni GR, Pan P, Baxter MV, et al.: Rational optimization of drug-target residence time: insights from inhibitor binding to the Staphylococcus aureus FabI enzyme-product complex. Biochemistry 2013, 52:4217-28.
- [7]Chen H, Liu Y, Zhao C, Xiao D, Zhang J, Zhang F, et al.: Comparative proteomics-based identification of genes associated with glycopeptide resistance in clinically derived heterogeneous vancomycin-intermediate Staphylococcus aureus strains. PLoS One 2013, 8:e66880.
- [8]Ciusa ML, Furi L, Knight D, Decorosi F, Fondi M, Raggi C, et al.: A novel resistance mechanism to triclosan that suggests horizontal gene transfer and demonstrates a potential selective pressure for reduced biocide susceptibility in clinical strains of Staphylococcus aureus. Int J Antimicrob Agents 2012, 40:210-20.
- [9]Condell O, Sheridan A, Power KA, Bonilla-Santiago R, Sergeant K, Renaut J, et al.: Comparative proteomic analysis of Salmonella tolerance to the biocide active agent triclosan. J Proteomics 2012, 75:4505-19.
- [10]Correa JE, De PA, Predari S, Sordelli DO, Jeric PE: First report of qacG, qacH and qacJ genes in Staphylococcus haemolyticus human clinical isolates. J Antimicrob Chemother 2008, 62:956-60.
- [11]Couto I, Wu SW, Tomasz A, de Lencastre H: Development of methicillin resistance in clinical isolates of Staphylococcus sciuri by transcriptional activation of the mecA homologue native to s. J Bacteriol 2003, 185:645-53.
- [12]Deshmukh SR, Purohit SG: Microarray Data: Statistical Analysis Using R. Alpha Science International Ltd., Oxford U.K; 2007.
- [13]Dyke KG, Aubert S, el Solh N: Multiple copies of IS256 in staphylococci. Plasmid 1992, 28:235-46.
- [14]Escaich S, Prouvensier L, Saccomani M, Durant L, Oxoby M, Gerusz V, et al.: The MUT056399 inhibitor of FabI is a new antistaphylococcal compound. Antimicrob Agents Chemother 2011, 55:4692-7.
- [15]Fan F, Yan K, Wallis NG, Reed S, Moore TD, Rittenhouse SF, et al.: Defining and combating the mechanisms of triclosan resistance in clinical isolates of Staphylococcus aureus. Antimicrob Agents Chemother 2002, 46:3343-7.
- [16]Furi L, Ciusa ML, Knight D, Di Lorenzo V, Tocci N, Cirasola D, et al.: Evaluation of reduced susceptibility to quaternary ammonium compounds and bisbiguanides in clinical isolates and laboratory-generated mutants of Staphylococcus aureus. Antimicrob.Agents Chemother. 2013, 57:3488-3497.
- [17]Heath RJ, Li J, Roland GE, Rock CO: Inhibition of the Staphylococcus aureus NADPH-dependent enoyl-acyl carrier protein reductase by triclosan and hexachlorophene. J Biol Chem 2000, 275:4654-9.
- [18]Heath RJ, Rock CO: A triclosan-resistant bacterial enzyme. Nature 2000, 406:145-6.
- [19]Heath RJ, Su N, Murphy CK, Rock CO: The enoyl-[acyl-carrier-protein] reductases FabI and FabL from Bacillus subtilis. J Biol Chem 2000, 275:40128-33.
- [20]Heath RJ, White SW, Rock CO: Inhibitors of fatty acid synthesis as antimicrobial chemotherapeutics. Appl Microbiol Biotechnol 2002, 58:695-703.
- [21]Hernandez A, Ruiz FM, Romero A, Martinez JL: The binding of triclosan to SmeT, the repressor of the multidrug efflux pump SmeDEF, induces antibiotic resistance in Stenotrophomonas maltophilia. PLoS Pathog 2011, 7:e1002103.
- [22]Innocenti N, Golumbeanu M, d’Hérouël AF, Lacoux C, Bonnin RA, Kennedy SP, Wessner F, Serror P, Bouloc P, Repoila F, Aurell E: Whole genome mapping of 5′ RNA ends in bacteria by tagged sequencing: A comprehensive view in Enterococcus faecalis. RNA. 2015, 21:1018-1030.
- [23]Ishii K, Adachi T, Yasukawa J, Suzuki Y, Hamamoto H, Sekimizu K: Induction of virulence gene expression in Staphylococcus aureus by pulmonary surfactant. Infect Immun 2014, 82:1500-10.
- [24]Jang HJ, Chang MW, Toghrol F, Bentley WE: Microarray analysis of toxicogenomic effects of triclosan on Staphylococcus aureus. Appl Microbiol Biotechnol 2008, 78:695-707.
- [25]Jones RD, Jampani HB, Newman JL, Lee AS: Triclosan: a review of effectiveness and safety in health care settings. Am J Infect Control 2000, 28:184-96.
- [26]Kaplan N, Albert M, Awrey D, Bardouniotis E, Berman J, Clarke T, et al.: Mode of action, in vitro activity, and in vivo efficacy of AFN-1252, a selective antistaphylococcal FabI inhibitor. Antimicrob Agents Chemother 2012, 56:5865-74.
- [27]Karlowsky JA, Kaplan N, Hafkin B, Hoban DJ, Zhanel GG: AFN-1252, a FabI inhibitor, demonstrates a Staphylococcus-specific spectrum of activity. Antimicrob Agents Chemother 2009, 53:3544-8.
- [28]Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, et al.: VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 2012, 22:568-76.
- [29]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 2001, 25:402-8.
- [30]Maki H, Murakami K: Formation of potent hybrid promoters of the mutant llm gene by IS256 transposition in methicillin-resistant Staphylococcus aureus. J Bacteriol 1997, 179:6944-8.
- [31]McLeod R, Muench SP, Rafferty JB, Kyle DE, Mui EJ, Kirisits MJ, et al.: Triclosan inhibits the growth of Plasmodium falciparum and Toxoplasma gondii by inhibition of apicomplexan Fab I. Int J Parasitol 2001, 31:109-13.
- [32]McMurry LM, McDermott PF, Levy SB: Genetic evidence that InhA of Mycobacterium smegmatis is a target for triclosan. Antimicrob Agents Chemother 1999, 43:711-3.
- [33]Meade MJ, Waddell RL, Callahan TM: Soil bacteria Pseudomonas putida and Alcaligenes xylosoxidans subsp. denitrificans inactivate triclosan in liquid and solid substrates. FEMS Microbiol Lett 2001, 204:45-8.
- [34]Nielsen LN, Larsen MH, Skovgaard S, Kastbjerg V, Westh H, Gram L, et al.: Staphylococcus aureus but not Listeria monocytogenes adapt to triclosan and adaptation correlates with increased fabI expression and agr deficiency. BMC Microbiol 2013, 13:177. BioMed Central Full Text
- [35]Noguchi N, Okihara T, Namiki Y, Kumaki Y, Yamanaka Y, Koyama M, et al.: Susceptibility and resistance genes to fluoroquinolones in methicillin-resistant Staphylococcus aureus isolated in 2002. Int J Antimicrob Agents 2005, 25:374-9.
- [36]Novichkov PS, Kazakov AE, Ravcheev DA, Leyn SA, Kovaleva GY, Sutormin RA, et al.: RegPrecise 3.0--a resource for genome-scale exploration of transcriptional regulation in bacteria. BMC Genomics 2013, 14:745. BioMed Central Full Text
- [37]Oggioni MR, Ciusa ML, Furi L, Baldassarri L, Orefici G, Cirasola D, et al.: Lack of evidence for reduced fitness of clinical Staphylococcus aureus isolates with reduced susceptibility to triclosan. Antimicrob Agents Chemother 2012, 56:6068-9.
- [38]Oggioni, M. R., J. R. Coelho, L. Furi, D. R. Knight, C. Viti, G. Orefici, J. L. Martinez, A. T. Freitas, T. M. Coque, and I. Morrissey. 2015. Significant differences characterise the correlation coefficients between biocide and antibiotic susceptibility profiles in Staphylococcus aureus. Curr.Pharm.Des. Mar 9. [Epub ahead of print]
- [39]Parikh SL, Xiao G, Tonge PJ: Inhibition of InhA, the enoyl reductase from Mycobacterium tuberculosis, by triclosan and isoniazid. Biochemistry 2000, 39:7645-50.
- [40]Park HS, Yoon YM, Jung SJ, Kim CM, Kim JM, Kwak JH: Antistaphylococcal activities of CG400549, a new bacterial enoyl-acyl carrier protein reductase (FabI) inhibitor. J Antimicrob Chemother 2007, 60:568-74.
- [41]Poole K: Efflux-mediated antimicrobial resistance. J Antimicrob Chemother 2005, 56:20-51.
- [42]Rice LB, Thorisdottir AS: The prevalence of sequences homologous to IS256 in clinical enterococcal isolates. Plasmid 1994, 32:344-9.
- [43]Sanchez P, Moreno E, Martinez JL: The biocide triclosan selects Stenotrophomonas maltophilia mutants that overproduce the SmeDEF multidrug efflux pump. Antimicrob Agents Chemother 2005, 49:781-2.
- [44]Schujman GE, Guerin M, Buschiazzo A, Schaeffer F, Llarrull LI, Reh G, et al.: Structural basis of lipid biosynthesis regulation in Gram-positive bacteria. EMBO J 2006, 25:4074-83.
- [45]Schweizer HP: Triclosan: a widely used biocide and its link to antibiotics. FEMS Microbiol Lett 2001, 202:1-7.
- [46]Sheridan A, Lenahan M, Condell O, Bonilla-Santiago R, Sergeant K, Renaut J, et al.: Proteomic and phenotypic analysis of triclosan tolerant verocytotoxigenic Escherichia coli O157:H19. J Proteomics 2013, 80C:78-90.
- [47]Skovgaard S, Nielsen LN, Larsen MH, Skov RL, Ingmer H, Westh H: Staphylococcus epidermidis isolated in 1965 are more susceptible to triclosan than current isolates. PLoS One 2013, 8:e62197.
- [48]Smith K, Gemmell CG, Hunter IS: The association between biocide tolerance and the presence or absence of qac genes among hospital-acquired and community-acquired MRSA isolates. J Antimicrob Chemother 2008, 61:78-84.
- [49]Tkachenko O, Shepard J, Aris VM, Joy A, Bello A, Londono I, et al.: A triclosan-ciprofloxacin cross-resistant mutant strain of Staphylococcus aureus displays an alteration in the expression of several cell membrane structural and functional genes. Res Microbiol 2007, 158:651-8.
- [50]Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 2001, 98:5116-21.
- [51]Yao J, Maxwell JB, Rock CO: Resistance to AFN-1252 arises from missense mutations in Staphylococcus aureus Enoyl-Acyl carrier protein reductase (FabI). J Biol Chem 2013, 288:36261-36271.
- [52]Yu BJ, Kim JA, Ju HM, Choi SK, Hwang SJ, Park S, et al.: Genome-wide enrichment screening reveals multiple targets and resistance genes for triclosan in Escherichia coli. J Microbiol 2012, 50:785-91.
- [53]Yu BJ, Kim JA, Pan JG: Signature gene expression profile of triclosan-resistant Escherichia coli. J Antimicrob Chemother 2010, 65:1171-7.
- [54]Zhu L, Lin J, Ma J, Cronan JE, Wang H: Triclosan resistance of Pseudomonas aeruginosa PAO1 is due to FabV, a triclosan-resistant enoyl-acyl carrier protein reductase. Antimicrob Agents Chemother 2010, 54:689-98.
PDF