期刊论文详细信息
BMC Evolutionary Biology
Analyses of mitochondrial amino acid sequence datasets support the proposal that specimens of Hypodontus macropi from three species of macropodid hosts represent distinct species
Robin B Gasser3  Aaron R Jex3  D Timothy J Littlewood1  Neil B Chilton2  Namitha Mohandas3  Ian Beveridge3  Abdul Jabbar3 
[1] Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK;Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada;Faculty of Veterinary Science, The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
关键词: Systematics;    Genetics;    Next-generation sequencing;    Sliding window analysis;    Wallaby;    Kangaroo;    Mitochondrial genome;    Hypodontus macropi;   
Others  :  1084680
DOI  :  10.1186/1471-2148-13-259
 received in 2013-06-27, accepted in 2013-11-19,  发布年份 2013
PDF
【 摘 要 】

Background

Hypodontus macropi is a common intestinal nematode of a range of kangaroos and wallabies (macropodid marsupials). Based on previous multilocus enzyme electrophoresis (MEE) and nuclear ribosomal DNA sequence data sets, H. macropi has been proposed to be complex of species. To test this proposal using independent molecular data, we sequenced the whole mitochondrial (mt) genomes of individuals of H. macropi from three different species of hosts (Macropus robustus robustus, Thylogale billardierii and Macropus [Wallabia] bicolor) as well as that of Macropicola ocydromi (a related nematode), and undertook a comparative analysis of the amino acid sequence datasets derived from these genomes.

Results

The mt genomes sequenced by next-generation (454) technology from H. macropi from the three host species varied from 13,634 bp to 13,699 bp in size. Pairwise comparisons of the amino acid sequences predicted from these three mt genomes revealed differences of 5.8% to 18%. Phylogenetic analysis of the amino acid sequence data sets using Bayesian Inference (BI) showed that H. macropi from the three different host species formed distinct, well-supported clades. In addition, sliding window analysis of the mt genomes defined variable regions for future population genetic studies of H. macropi in different macropodid hosts and geographical regions around Australia.

Conclusions

The present analyses of inferred mt protein sequence datasets clearly supported the hypothesis that H. macropi from M. robustus robustus, M. bicolor and T. billardierii represent distinct species.

【 授权许可】

   
2013 Jabbar et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113163452378.pdf 569KB PDF download
Figure 3. 52KB Image download
Figure 2. 37KB Image download
Figure 1. 56KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Mönnig HO: Hypodontus macropi, n. gen., n. sp., a hookworm of the kangaroo. Pretoria: Union of South Africa; 1929:303-306. [15th Annual Report of the Director of Veterinary Services]
  • [2]Beveridge I: Hypodontus macropiMönnig, 1929, a hook-worm like parasite of macropodid marsupials. J Helminthol 1979, 53:229-244.
  • [3]Setasuban P, Arundel JH: Hypodontus macropiMönnig, 1929 from a Bennett’s wallaby Macropus rufogrisea. Southeast Asian J Trop Med Public Health 1996, 7:102-105.
  • [4]Beveridge I, Arundel JH: Helminth parasites of grey kangaroos, Macropus giganteus Shaw and M. fuliginosus (Desmarest), in eastern Australia. Aust Wildlife Res 1979, 6:69-77.
  • [5]Beveridge I, Spratt DM, Close RL, Barker SC, Sharman GB: Helminth parasites of rock wallabies, Petrogale spp. (Marsupialia) from Queensland. Aust Wildlife Res 1989, 39:691-702.
  • [6]Begg M, Beveridge I, Chilton NB, Johnson PM, O’Callaghan MG: Parasites of the Proserpine Rock Wallaby, Petrogale persephone (Marsupialia: Macropodidae). Aust Mammal 1996, 18:45-53.
  • [7]Bradley C, Beveridge I, Chilton NB, Johnson PM: Helminth parasites of the purple-necked rock wallaby,Petrogale lateralis purpureicollis, from Queensland. Trans Roy Soc South Aust 2000, 124:37-40.
  • [8]Chilton NB, Beveridge I, Andrews RH: Detection by allozyme electrophoresis of cryptic species of Hypodontus macropi (Nematoda: Strongyloidea) from macropodid marsupials. Int J Parasitol 1992, 22:271-279.
  • [9]Chilton NB, Gasser RB, Beveridge I: Differences in a ribosomal DNA sequence of morphologically indistinguishable species within the Hypodontus macropi complex (Nematoda: Strongyloidea). Int J Parasitol 1995, 25:647-651.
  • [10]Gasser RB, Zhu X, Beveridge I, Chilton N: Mutation scanning analysis of sequence heterogeneity in the second internal transcribed spacer (rDNA) within some members of the Hypodontus macropi (Nematoda: Strongyloidea) complex. Electrophoresis 2001, 22:1076-1085.
  • [11]Chilton NB, Jabbar A, Huby-Chilton F, Jex A, Gasser RB, Beveridge I: Genetic variation within the Hypodontus macropi (Nematoda: Strongyloidea) complex from macropodid marsupial hosts in Australia. Electrophoresis 2012, 33:3544-3554.
  • [12]Criscione CD, Poulin R, Blouin MS: Molecular ecology of parasites: elucidating ecological and microevolutionary processes. Mol Ecol 2005, 14:2247-2257.
  • [13]Chilton NB: The use of nuclear ribosomal DNA markers for the identification of bursate nematodes (order Strongylida) and for the diagnosis of infections. Anim Health Res Rev 2004, 5:171-87.
  • [14]Gasser RB: Molecular tools–advances, opportunities and prospects. Vet Parasitol 2006, 136:69-89.
  • [15]Gasser RB, Bott NJ, Chilton NB, Hunt P, Beveridge I: Towards practical, DNA-based diagnostic methods for parasitic nematodes of livestock - bionomic and biotechnological implications. Biotechnol Adv 2008, 26:325-34.
  • [16]Le TH, Blair D, McManus DP: Mitochondrial genomes of parasitic flatworms. Trends Parasitol 2002, 18:206-213.
  • [17]Hu M, Chilton NB, Gasser RB: The mitochondrial genomics of parasitic nematodes of socio-economic importance: recent progress, and implications for population genetics and systematics. Adv Parasitol 2004, 56:133-212.
  • [18]Hu M, Gasser RB: Mitochondrial genomes of parasitic nematodes—progress and perspectives. Trends Parasitol 2006, 22:78-84.
  • [19]Zarowiecki MZ, Huyse T, Littlewood DT: Making the most of mitochondrial genomes – markers for phylogeny, molecular ecology and barcodes in Schistosoma (Platyhelminths: Digenea). Int J Parasitol 2007, 37:1401-1418.
  • [20]Jex AR, Littlewood DT, Gasser RB: Toward next-generation sequencing of mitochondrial genomes–focus on parasitic worms of animals and biotechnological implications. Biotechnol Adv 2010, 28:151-159.
  • [21]Jex AR, Hall RS, Littlewood DT, Gasser RB: An integrated pipeline for next-generation sequencing and annotation of mitochondrial genomes. Nucleic Acids Res 2010, 38:522-533.
  • [22]Okimoto R, Macfarlane L, Clary D, Wolstenholme DR: The mitochondrial genomes of two nematodes, Caenorhabditis elegansandAscaris suum. Genetics 1992, 130:471-498.
  • [23]Hu M, Chilton NB, Abs El-Osta YG, Gasser RB: Comparative analysis of mitochondrial genome data for Necator americanus from two endemic regions reveals substantial genetic variation. Int J Parasitol 2003, 33:955-963.
  • [24]Lavrov DV, Brown WM: Trichinella spiralis mtDNA: a nematode mitochondrial genome that encodes a putative atp8 and normally structured tRNAs and has a gene arrangement relatable to those of coelomate metazoans. Genetics 2001, 157:621-637.
  • [25]Hu M, Chilton NB, Gasser RB: The mitochondrial genomes of the human hookworms, Ancylostoma duodenale and Necator americanus (Nematoda: Secernentea). Int J Parasitol 2002, 32:145-158.
  • [26]Keddie EM, Higazi T, Boakye D, Merriweather A, Wooten MC, Unnasch TR: Onchocerca volvulus: limited heterogeneity in the nuclear and mitochondrial genomes. Exp Parasitol 1999, 93:198-206.
  • [27]Hu M, Chilton NB, Gasser RB: The mitochondrial genome of Strongyloides stercoralis (Nematoda) – idiosyncratic gene order and evolutionary implications. Int J Parasitol 2003, 33:1393-1408.
  • [28]He Y, Jones J, Armstrong M, Lamberti F, Moens M: The mitochondrial genome of Xiphinema americanum sensu stricto (Nematoda: Enoplea): considerable economization in the length and structural features of encoded genes. J Mol Evol 2005, 61:819-833.
  • [29]Van der Veer M, de Vries E: A single nucleotide polymorphism map of the mitochondrial genome of the parasitic nematode Cooperia oncophora. Parasitology 2004, 128:421-431.
  • [30]Okimoto R, Macfarlane JL, Wolstenholme DR: Evidence for the frequent use of TTG as the translation initiation codon of mitochondrial protein genes in the nematodes, Ascaris suum and Caenorhabditis elegans. Nucleic Acids Res 1999, 18:6113-6118.
  • [31]Keddie EM, Higazi T, Unnasch TR: The mitochondrial genome of Onchocerca volvulus: sequence, structure and phylogenetic analysis. Mol Biochem Parasitol 1998, 95:111-127.
  • [32]Hu M, Gasser RB, Abs El-Osta YG, Chilton NB: Structure and organization of the mitochondrial genome of the canine heartworm, Dirofilaria immitis. Parasitology 2003, 127:37-51.
  • [33]Nadler SA, Pérez-Ponce de León G: Integrating molecular and morphological approaches for characterizing parasite cryptic species: implications for parasitology. Parasitology 2011, 138:1688-1709.
  • [34]Beveridge I, Chilton NB, Andrews RH: Sibling species within Macropostrongyloides baylisi (Nematoda: Strongyloidea) from macropodid marsupials. Int J Parasitol 1993, 23:21-33.
  • [35]Beveridge I, Spratt DM: The helminth fauna of Australasian marsupials: origins and evolutionary biology. Adv Parasitol 1996, 37:136-254.
  • [36]Chilton NB, Andrews RH, Beveridge I: Genetic evidence for a complex of species within Rugopharynx australis (Mönnig, 1926) (Nematoda: Strongyloidea) from macropodid marsupials. Syst Parasitol 1996, 34:125-133.
  • [37]Beveridge I, Chilton NB: Revision of the Rugopharynx australis (Moennig, 1926) complex (Nematoda: Strongyloidea) from macropodid marsupials. Invert Taxon 1999, 13:805-843.
  • [38]Chilton NB, Huby-Chilton F, Johnson PM, Beveridge I, Gasser RB: Genetic variation within species of the nematode genus Cloacina (Strongyloidea: Cloacininae) parasitic in the stomachs of rock wallabies, Petrogale spp. (Marsupialia: Macropodidae) in Queensland. Aust J Zool 2009, 57:1-10.
  • [39]Avise JC: Molecular markers, natural history and evolution. New York: Chapman and Hall; 1994.
  • [40]Nadler SA: Species delimitation and nematode biodiversity: phylogenies rule. Nematol 2002, 4:615-625.
  • [41]Anderson TJC, Blouin MS, Beech RN: Populations biology of parasitic nematodes: applications of genetic markers. Adv Parasitol 1998, 41:219-283.
  • [42]Gasser RB, Hu M, Chilton NB, Campbell BE, Jex AR, Otranto D, Cafarchia C, Beveridge I, Zhu XQ: Single-strand conformation polymorphism (SSCP) for the analysis of genetic variation. Nat Protoc 2006, 1:3121-3128.
  • [43]Mardis E: Next-generation DNA sequencing methods. Ann Rev Genomics Human Genet 2008, 9:387-402.
  • [44]Hu M, Jex AR, Campbell BE, Gasser RB: Long PCR amplification of the entire mitochondrial genome from individual helminths for direct sequencing. Nat Protoc 2007, 2:2339-2344.
  • [45]Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage K, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, et al.: Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005, 437:376-380.
  • [46]Huang X, Madan A: CAP3: A DNA sequence assembly program. Genome Res 1999, 9:868-877.
  • [47]Jameson D, Gibson AP, Hudelot C, Higgs PG: OGRe: a relational database for comparative analysis of mitochondrial genomes. Nucleic Acids Res 2003, 31:202-206.
  • [48]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32:1792-1797.
  • [49]Hall TA: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999, 41:95-98.
  • [50]Huelsenbeck JP, Ronquist F: MRBAYES: Bayesian inference of phylogeny. Bioinformatics 2001, 17:754-755.
  • [51]Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19:1572-1574. [45]
  • [52]Abascal F, Zardoya R, Posada D: ProtTest: Selection of best-fit models of protein evolution. Bioinformatics 2005, 21:2104-2105.
  • [53]Bishop MJ, Friday AE: Evolutionary trees from nucleic acid and protein sequences. Proc R Soc Lond B Biol Sci 1985, 226:271-302.
  • [54]Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R: DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 2003, 19:2496-2497.
  • [55]Gouy M, Guindon S, Gascuel O: SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 2010, 27:221-224.
  文献评价指标  
  下载次数:272次 浏览次数:188次