BMC Public Health | |
Spatial patterns of the congenital heart disease prevalence among 0- to 14-year-old children in Sichuan Basin, P. R China, from 2004 to 2009 | |
Xu Ma1  Jin-Feng Wang2  Zuo-Qi Peng1  Yuan-Yuan Wang1  Zhou-Peng Ren2  Jun Zhao1  Li-Guang Ma1  | |
[1] National Research Institute for Family Planning, Beijing 100081, People's Republic of China;State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, People's Republic of China | |
关键词: Sichuan Basin; Hot-spot analysis; Spatial autocorrelation; Hierarchical Bayesian model(HB); Congenital heart disease(CHD); | |
Others : 1129483 DOI : 10.1186/1471-2458-14-595 |
|
received in 2013-09-15, accepted in 2014-05-15, 发布年份 2014 | |
【 摘 要 】
Background
Congenital heart disease (CHD) is the most common type of major birth defects in Sichuan, the most populous province in China. The detailed etiology of CHD is unknown but some environmental factors are suspected as the cause of this disease. However, the geographical variations in CHD prevalence would be highly valuable in providing a clue on the role of the environment in CHD etiology. Here, we investigate the spatial patterns and geographic differences in CHD prevalence among 0- to 14-year-old children, discuss the possible environmental risk factors that might be associated with CHD prevalence in Sichuan Basin from 2004 to 2009.
Methods
The hierarchical Bayesian model was used to estimate CHD prevalence at the township level. Spatial autocorrelation statistics were performed, and a hot-spot analysis with different distance thresholds was used to identify the spatial pattern of CHD prevalence. Distribution and clustering maps were drawn using geographic information system tools.
Results
CHD prevalence was significantly clustered in Sichuan Basin in different spatial scale. Typical hot/cold clusters were identified, and possible CHD causes were discussed. The association between selected hypothetical environmental factors of maternal exposure and CHD prevalence was evaluated.
Conclusions
The largest hot-spot clustering phenomena and the CHD prevalence clustering trend among 0- to 14-year-old children in the study area showed a plausibly close similarity with those observed in the Tuojiang River Basin. The high ecological risk of heavy metal(Cd, As, and Pb)sediments in the middle and lower streams of the Tuojiang River watershed and ammonia–nitrogen pollution may have contribution to the high prevalence of CHD in this area.
【 授权许可】
2014 Ma et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150226055539527.pdf | 1709KB | download | |
Figure 6. | 297KB | Image | download |
Figure 5. | 167KB | Image | download |
Figure 4. | 168KB | Image | download |
Figure 3. | 218KB | Image | download |
Figure 2. | 211KB | Image | download |
Figure 1. | 118KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]van der Linde D, Konings EEM, Slager MA, Witsenburg M, Helbing WA, Takkenberg JJM, Roos-Hesselink JW: Birth prevalence of congenital heart disease WorldwideA systematic review and meta-analysis. J Am Coll Cardiol 2011, 58(21):2241-2247.
- [2]Bernier PL, Stefanescu A, Samoukovic G, Tchervenkov CI: The challenge of congenital heart disease worldwide: epidemiologic and demographic facts. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 2010, 13:26-34.
- [3]Liu S, Liu J, Tang J, Ji J, Chen J, Liu C: Environmental risk factors for congenital heart disease in the Shandong Peninsula, China: a hospital-based case–control study. J Epidemiol 2009, 19(3):122-130.
- [4]Liu YL: The advancement and challenges of management of infant and young children's congenital heart defect in China. Nat Med J China 2004, 84(11):881-884.
- [5]Ouyang N, Luo J, Du Q, Liu Z: Case–control study on environmental factors in congenital heart disease. J Cent S Univ Med Sci 2011, 36(2):159-164.
- [6]Zhang Y, Riehle-Colarusso T, Correa A, Li S, Feng X, Gindler J, Lin H, Webb C, Li W, Trines J, Berry RJ, Yeung L, Luo Y, Jiang M, Chen H, Sun X, Li Z: Observed prevalence of congenital heart defects from a surveillance study in China. J Ultrasound Med 2011, 30(7):989-995.
- [7]Wu J, Wang J, Meng B, Chen G, Pang L, Song X, Zhang K, Zhang T, Zheng X: Exploratory spatial data analysis for the identification of risk factors to birth defects. BMC Public Health 2004, 4(1):23. BioMed Central Full Text
- [8]Mocumbi AO, Lameira E, Yaksh A, Paul L, Ferreira MB, Sidi D: Challenges on the management of congenital heart disease in developing countries. Int J Cardiol 2011, 148(3):285-288.
- [9]Li H, Calder CA, Cressie N: Beyond Moran's I: testing for spatial dependence based on the spatial autoregressive model. Geogr Anal 2007, 39(4):357-375.
- [10]Klemetti A: Environmental factors and congenital malformations, a prospective study. Acta Ophthalmol (Copenh) 1968, 46(3):350-351.
- [11]Nora JJ: Multifactorial inheritance hypothesis for the etiology of congenital heart diseases: the genetic-environmental interaction. Circulation 1968, 38(3):604-617.
- [12]Brennan P, Young ID: Congenital heart malformations: aetiology and associations. Semin Neonatol 2001, 6(1):17-25.
- [13]Blue GM, Kirk EP, Sholler GF, Harvey RP, Winlaw DS: Congenital heart disease: current knowledge about causes and inheritance. Med J Aust 2012, 197(3):155-159.
- [14]Dolk H: Epidemiologic approaches to identifying environmental causes of birth defects. Am J Med Genet C: Semin Med Genet 2004, 125C(1):4-11.
- [15]Armstrong BG, Dolk H, Pattenden S, Vrijheid M, Loane M, Rankin J, Dunn CE, Grundy C, Abramsky L, Boyd PA, Stone D, Wellesley D: Geographic variation and localised clustering of congenital anomalies in Great Britain. Emerg Themes Epidemiol 2007, 4:14. BioMed Central Full Text
- [16]Greer W, Sandridge AL, Al-Menieir M, Al Rowais A: Geographical distribution of congenital heart defects in Saudi Arabia. Ann Saudi Med 2005, 25(1):63-69.
- [17]Cronk CE, Gangnon R, Cossette S, McElroy JA, Pelech AN: Modeling geographic risk of complex congenital heart defects in Eastern Wisconsin. Birth Defects Res Part A: Clin Mol Teratol 2011, 91(7):631-641.
- [18]Cavero Carbonell C, Zurriaga O, Pérez Panadés J, Barona Vilar C, Martos Jiménez C: Temporal variation and geographical distribution: congenital heart defects in the Comunitat Valenciana. Anales de Pediatria (Barcelona, Spain: 2003) 2013, 79(3):149-156.
- [19]Agay-Shay K, Amitai Y, Peretz C, Linn S, Friger M, Peled A: Exploratory spatial data analysis of congenital malformations (CM) in israel, 2000–2006. ISPRS Int J Geo-Inform 2013, 2(1):237-255.
- [20]Miao CY, Li WX, Geng D, Tao LA, Zuberbuhler JS, Zuberbuhler JR: Effect of high altitude on prevalence of congenital heart disease. Chin Med J 1988, 101(6):415-418.
- [21]Sandridge AL, Greer W, Al-Menieir M, Al Rowais A: Exploring the impact of altitude on congenital heart defects in Saudi Arabia. Avicenna 2010, 2010:3.
- [22]Miao CY, Zuberbuhler JS, Zuberbuhler JR: Prevalence of congenital cardiac anomalies at high altitude. J Am Coll Cardiol 1988, 12(1):224-228.
- [23]Davies BR: The seasonal conception of lethal congenital malformations. Arch Med Res 2000, 31(6):589-591.
- [24]Samanek M, Slavik Z, Krejcir M: Seasonal differences in the incidence of congenital heart defects. Czech Med 1991, 14(3):146-155.
- [25]Sandahl B: Seasonal incidence of some congenital malformations in the central nervous system in Sweden, 1965–1972. Acta Paediatr Scand 1977, 66(1):65-72.
- [26]Valadez A, Meltzer AA: Seasonal variation in the incidence of congenital malformations in San Miguel de Allende, Mexico. Prog Clin Biol Res 1990, 341A:741-745.
- [27]Grech V: Seasonality in live births with congenital heart disease in Malta. Cardiol Young 1999, 9(4):396-401.
- [28]Dadvand P, Rankin J, Rushton S, Pless-Mulloli T: Ambient air pollution and congenital heart disease: A register-based study. Environ Res 2011, 111(3):435-441.
- [29]Dolk H, Armstrong B, Lachowycz K, Vrijheid M, Rankin J, Abramsky L, Boyd PA, Wellesley D: Ambient air pollution and risk of congenital anomalies in England, 1991–1999. Occup Environ Med 2010, 67(4):223-227.
- [30]Dadvand P, Rankin J, Rushton S, Pless-Mulloli T: Association between maternal exposure to ambient Air pollution and congenital heart disease: a register-based spatiotemporal analysis. Am J Epidemiol 2010, 173(2):171-182.
- [31]Rankin J, Chadwick T, Natarajan M, Howel D, Pearce MS, Pless-Mulloli T: Maternal exposure to ambient air pollutants and risk of congenital anomalies. Environ Res 2009, 109(2):181-187.
- [32]Agay-Shay K, Friger M, Linn S, Peled A, Amitai Y, Peretz C: Air pollution and congenital heart defects. Environ Res 2013, 124:28-34.
- [33]Vrijheid M, Martinez D, Manzanares S, Dadvand P, Schembari A, Rankin J, Nieuwenhuijsen M: Ambient air pollution and risk of congenital anomalies: a systematic review and meta-analysis. Environ Health Perspect 2011, 119(5):598.
- [34]Goldberg SJ, Lebowitz MD, Graver EJ, Hicks S: An association of human congenital cardiac malformations and drinking water contaminants. J Am Coll Cardiol 1990, 16(1):155-164.
- [35]Dolk H, Vrijheid M: The impact of environmental pollution on congenital anomalies. Br Med Bull 2003, 68:25-45.
- [36]Kuciene R, Dulskiene V: Selected environmental risk factors and congenital heart defects. Medicina (Kaunas) 2008, 44:827-832.
- [37]Stoupel E, Birk E, Kogan A, Klinger G, Abramson E, Israelevich P, Sulkes J, Linder N: Congenital heart disease: correlation with fluctuations in cosmophysical activity, 1995–2005. Int J Cardiol 2009, 135(2):207-210.
- [38]Stoupel EDV, Kuciene R, Abramson E, Israelevich P, Sulkes J: Congenital heart disease (CHD) and environmental physical activity, kaunas, 1995–2005. Sun and Geosphere 2009, 4(2):45-49.
- [39]Anselin: Local indicators of spatial association: LISA. Geogr Anal 1995, 27(3):93-115.
- [40]Getis A, Ord JK: The analysis of spatial association by use of distance statistics. Geogr Anal 1992, 24(3):189-206.
- [41]Spiegelhalter D, Thomas A, Best N, Lunn D: WinBug program version 1.4. Biostatistics Unit, Cambridge 2003, 7(8):9.
- [42]Sichuan http://en.wikipedia.org/wiki/Sichuan webcite
- [43]Haining RP: Spatial Data Analysis: Theory and Practice. Cambridge: Cambridge University Press; 2003.
- [44]Besag J, Newell J: The detection of clusters in rare diseases. J R Stat Soc Ser A Stat Soc 1991, 154:143-155.
- [45]Besag J: Spatial interaction and the statistical analysis of lattice systems. J R Stat Soc Ser B Methodol 1974, 36(2):192-236.
- [46]Tobler WR: A computer movie simulating urban growth in the Detroit region. Econ Geogr 1970, 46:234-240.
- [47]Ord JK, Getis A: Testing for local spatial autocorrelation in the presence of global autocorrelation. J Reg Sci 2001, 41(3):411-432.
- [48]Moran PA: Notes on continuous stochastic phenomena. Biometrika 1950, 37(1–2):17-23.
- [49]Jia-xuan L, Ze-ming S, Lin Z, Shi-jun N: Evaluation on potential ecological risk of heavy metals pollution in sediments from Tuojiang drainage. Earth Environ 2010, 4:017.
- [50]TingTing W: Vertical Distributions of Various Bacteria and Arsenic Species in Sediments of Tuojiang River in Different Seasons. PhD Thesis,Chengdu: University of Technology, Analytical Chemistry; 2008.
- [51]Jian-ping L: Study of water quality analysis and pollution status of Tuojiang river in the area of Fushun. Sichuan Environ 2013, 32(2):23-26.
- [52]WU Y, Deng T, XU Q, Guo Y: Environmental pollution behaviors of Pb and Cd in fluvial sediments in Tuojiang river. Guangdong Trace Ele Sci 2010, 17(9):22-28.
- [53]Hayward PM: The Modifiable Areal Unit Problem (MAUP) and Health Disparities. Proquest: Umi Dissertation Publishing; 2009.