期刊论文详细信息
BMC Genetics
Population structure of four Thai indigenous chicken breeds
Sissades Tongsima1  Wanwisa Chareanchim1  Alisa Wilantho1  Anunchai Assawamakin2  Pantaporn Supakankul3  Supamit Mekchay4 
[1]Biostatistics and Informatics Laboratory, Genome Institute, National Center for Genetic Engineering and Biotechnology (BIOTEC), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
[2]Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
[3]School of Agriculture and Natural Resources, University of Phayao, Phayao 56000, Thailand
[4]Center of Excellence on Agricultural Biotechnology: (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand
关键词: AFLP;    SNP;    Genetic variation;    Population structure;    Thai indigenous chicken;   
Others  :  866571
DOI  :  10.1186/1471-2156-15-40
 received in 2013-06-26, accepted in 2014-03-10,  发布年份 2014
PDF
【 摘 要 】

Background

In recent years, Thai indigenous chickens have increasingly been bred as an alternative in Thailand poultry market. Due to their popularity, there is a clear need to improve the underlying quality and productivity of these chickens. Studying chicken genetic variation can improve the chicken meat quality as well as conserving rare chicken species. To begin with, a minimal set of molecular markers that can characterize the Thai indigenous chicken breeds is required.

Results

Using AFLP-PCR, 30 single nucleotide polymorphisms (SNPs) from Thai indigenous chickens were obtained by DNA sequencing. From these SNPs, we genotyped 465 chickens from 7 chicken breeds, comprising four Thai indigenous chicken breeds- Pradhuhangdum (PD), Luenghangkhao (LK), Dang (DA) and Chee (CH), one wild chicken - the red jungle fowls (RJF), and two commercial chicken breeds - the brown egg layer (BL) and commercial broiler (CB). The chicken genotypes reveal unique genetic structures of the four Thai indigenous chicken breeds. The average expected heterozygosities of PD= 0.341, LK= 0.357, DA=0.349 and CH= 0.373, while the references RJF= 0.327, CB=0.324 and BL= 0.285. The FST values among Thai indigenous chicken breeds vary from 0.051 to 0.096. The FST values between the pairs of Thai indigenous chickens and RJF vary from 0.083 to 0.105 and the FST values between the Thai indigenous chickens and the two commercial chicken breeds vary from 0.116 to 0.221. A neighbour-joining tree of all individual chickens showed that the Thai indigenous chickens were clustered into four groups which were closely related to the wild RJF but far from the commercial breeds. Such commercial breeds were split into two closely groups. Using genetic admixture analysis, we observed that the Thai indigenous chicken breeds are likely to share common ancestors with the RJF, while both commercial chicken breeds share the same admixture pattern.

Conclusion

These results indicated that the Thai indigenous chicken breeds may descend from the same ancestors. These indigenous chicken breeds were more closely related to red jungle fowls than those of the commercial breeds. These findings showed that the proposed SNP panel can effectively be used to characterize the four Thai indigenous chickens.

【 授权许可】

   
2014 Mekchay et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140727075116950.pdf 708KB PDF download
157KB Image download
Fig. 3. 52KB Image download
Figure 1. 48KB Image download
【 图 表 】

Figure 1.

Fig. 3.

【 参考文献 】
  • [1]Fumihito A, Miyake T, Sumi S, Takada M, Ohno S, Kondo N: One subspecies of the red junglefowl (Gallus gallus gallus) suffices as the matriarchic ancestor of all domestic breeds. Proc Natl Acad Sci U S A 1994, 91:12505-12509.
  • [2]Fumihito A, Miyake T, Takada M, Shingu R, Endo T, Gojobori T, Kondo N, Ohno S: Monophyletic origin and unique dispersal patterns of domestic fowls. Proc Natl Acad Sci U S A 1996, 93:6792-6795.
  • [3]Hillel J, Groenen MA, Tixier-Boichard M, Korol AB, David L, Kirzhner VM, Burke T, Barre-Dirie A, Crooijmans RP, Elo K, Feldman MW, Freidlin PJ, Mäki-Tanila A, Oortwijn M, Thomson P, Vignal A, Wimmers K, Weigend S: Biodiversity of 52 chicken populations assessed by microsatellite typing of DNA pools. Genet Sel Evol 2003, 35:533-557. BioMed Central Full Text
  • [4]Liu YP, Wu GS, Yao YG, Miao YW, Luikart G, Baig M, Beja-Pereira A, Ding ZL, Palanichamy MG, Zhang YP: Multiple maternal origins of chickens: out of the Asian jungles. Mol Phylogenet Evol 2006, 38:12-19.
  • [5]Akaboot P, Duangjinda M, Phasuk Y, Kaenechan C, Chinchiyanond W: Genetic characterization of red junglefowls (Gallus gallus), Thai indigenous chicken (Gallus domesticus), and two commercial lines using selective functional genes compared to microsatellite markers. Genet Mol Res 2012, 11:1881-1890.
  • [6]Berthouly C, Leroy G, Van TN, Thanh HH, Bed’Hom B, Nguyen BT, Vu CC, Monicat F, Tixier-Boichard M, Verrier E, Maillard JC, Rognon X: Genetic analysis of local Vietnamese chickens provides evidence of gene flow from wild to domestic populations. BMC Genet 2009, 10:1.
  • [7]Berthouly-Salazar C, Rognon X, Van T, Gély M, Chi CV, Tixier-Biochard M, Bed’Hom B, Bruneau N, Verrier E, Maillard JC, Michaux JR: Vietnamese chickens: a gate towards Asian genetic diversity. BMC Genet 2010, 11:53.
  • [8]Elferink MG, Megens HJ, Vereijken A, Hu X, Crooijmans RP, Groenen MA: Signatures of selection in the genomes of commercial and non-commercial chicken breeds. PLoS One 2012, 7:e32720.
  • [9]Wattanachant S, Benjakul S, Ledward DA: Composition, color, and texture of Thai indigenous and broiler chicken muscles. Poult Sci 2004, 83:123-128.
  • [10]Jaturasitha S, Srikanchai T, Kreuzer M, Wicke M: Differences in carcass and meat characteristics between chicken indigenous to northern Thailand (black-boned and Thai native) and imported extensive breeds (Bresse and Rhode Island Red). Poult Sci 2008, 87:160-169.
  • [11]Wattanachant S, Benjakul S, Ledward DA: Microstructure and thermal characteristics of Thai indigenous and broiler chicken muscles. Poult Sci 2005, 84:328-336.
  • [12]Teltathum T, Mekchay S: Proteome changes in Thai indigenous chicken muscle during growth period. Int J Biol Sci 2009, 5:679-685.
  • [13]Mekchay S, Teltathum T, Nakasathien S, Pongpaichan P: Proteomic analysis of tenderness trait in Thai native and commercial broiler chicken muscles. J Poult Sci 2010, 47:8-12.
  • [14]Dorji N, Duangjinda M, Phasuk Y: Genetic characterization of Thai indigenous chickens compared with commercial lines. Trop Anim Health Prod 2011, 43:779-785.
  • [15]Dorji N, Duangjinda M, Phasuk Y: Genetic characterization of Bhutanese native chickens based on an analysis of red junglefowl (Gallus gallus gallus and Gallus gallus spadecieus), domestic Southeast Asian and commercial chicken lines (Gallus gallus domesticus). Genet Mol Biol 2012, 35:603-609.
  • [16]Okumura F, Shimogiri T, Kawabe K, Okamoto S, Nishibori M, Yamamoto Y, Maeda Y: Gene constitution of South-East Asian native chickens, commercial chickens and jungle fowl using polymorphisms of four calpain genes. Anim Sci J 2006, 77:188-195.
  • [17]Storey AA, Athens JS, Bryant D, Carson M, Emery K, deFrance S, Higham C, Huynen L, Intoh M, Jones S, Kirch PV, Ladefoged T, McCoy P, Morales-Muñiz A, Quiroz D, Reitz E, Robins J, Walter R, Matisoo-Smith E: Investigating the global dispersal of chickens in prehistory using ancient mitochondrial DNA signatures. PLoS One 2012, 7:e39171.
  • [18]Wimmers K, Ponsuksili S, Hardge T, Valle-Zarate A, Mathur PK, Horst P: Genetic distinctness of African, Asian and South American local chickens. Anim Genet 2000, 31:159-165.
  • [19]Dávila SG, Gil MG, Resino-Talaván P, Campo JL: Evaluation of diversity between different Spanish chicken breeds, a tester line, and a White Leghorn population based on microsatellite markers. Poult Sci 2009, 88:2518-2525.
  • [20]Mtileni BJ, Muchadeyi FC, Maiwashe A, Groeneveld E, Groeneveld LF, Dzama K, Weigend S: Genetic diversity and conservation of South African indigenous chicken populations. J Anim Breed Genet 2011, 128:209-218.
  • [21]Muir WM, Wong GK, Zhang Y, Wang J, Groenen MA, Crooijmans RP, Megens H, Zhang HJ, Okimoto R, Vereijken A, Jungerius A, Albers GA, Lawley CT, Delany ME, MacEachern S, Cheng HH: Genome-wide assessment of worldwide chicken SNP genetic diversity indicates significant absence of rare alleles in commercial breeds. Proc Natl Acad Sci U S A 2008, 105:17312-17317.
  • [22]Groenen MA, Megens HJ, Zare Y, Warren WC, Hillier LW, Crooijmans RP, Vereijken A, Okimoto R, Muir WM, Cheng HH: The development and characterization of a 60 K SNP chip for chicken. BMC Genomics 2011, 12:274. BioMed Central Full Text
  • [23]Kranis A, Gheyas AA, Boschiero C, Turner F, Yu L, Smith S, Talbot R, Pirani A, Brew F, Kaiser P, Hocking PM, Fife M, Salmon N, Fulton J, Strom TM, Haberer G, Weigend S, Preisinger R, Gholami M, Qanbari S, Simianer H, Watson KA, Woolliams JA, Burt DW: Development of a high density 600 K SNP genotyping array for chicken. BMC Genomics 2013, 14:59. BioMed Central Full Text
  • [24]Riztyan , Katano T, Shimogiri T, Kawabe K, Okamoto S: Genetic diversity and population structure of Indonesian native chickens based on single nucleotide polymorphism markers. Poult Sci 2011, 90:2471-2478.
  • [25]Shimogiri T, Nishida N, Kudo M, Niwa K, Nishibori M, Kinoshita K, Okamoto S, Maeda Y, Tokunaga K, Yasue H: Genetic relationships between Japanese native and commercial breeds using 70 chicken autosomal SNP genotypes by the DigiTag2 assay. Anim Genet 2012, 43:98-103.
  • [26]Twito T, Weigend S, Blum S, Granevitze Z, Feldman MW, Perl-Treves R, Lavi U, Hillel J: Biodiversity of 20 chicken breeds assessed by SNPs located in gene regions. Cytogenet Genome Res 2007, 117:319-326.
  • [27]Wimmers K, Murani E, Ponsuksili S, Yerle M, Schellander K: Detection of quantitative trait loci for carcass traits in the pig by using AFLP. Mamm Genome 2002, 13:206-210.
  • [28]Campbell D, Duchesne P, Bernatchez L: AFLP utility for population assignment studies: analytical investigation and empirical comparison with microsatellites. Mol Ecol 2003, 12:1979-1991.
  • [29]De Marchi M, Dalvit C, Targhetta C, Cassandro M: Assessing genetic diversity in indigenous Veneto chicken breeds using AFLP markers. Anim Genet 2006, 37:101-105.
  • [30]Soattin M, Barcaccia G, Dalvit C, Cassandro M, Bittante G: Genomic DNA fingerprinting of indigenous chicken breeds with molecular markers designed on interspersed repeats. Hereditas 2009, 146:183-197.
  • [31]Vanhala T, Tuiskula-Haavisto M, Elo K, Vilkki J, Mäki-Tanila A: Evaluation of genetic variability and genetic distances between eight chicken lines using microsatellite markers. Poult Sci 1998, 77:783-790.
  • [32]Sawai H, Kim HL, Kuno K, Suzuki S, Gotoh H, Takada M, Takahata N, Satta Y, Akishinonomiya F: The origin and genetic variation of domestic chickens with special reference to junglefowls Gallus g. gallus and G. varius. PLoS One 2010, 5:e10639.
  • [33]Berthouly C, Bed’Hom B, Tixier-Boichard M, Chen CF, Lee YP, Laloë D, Legros H, Verrier E, Rognon X: Using molecular markers and multivariate methods to study the genetic diversity of local European and Asian chicken breeds. Anim Genet 2008, 39:121-129.
  • [34]Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M: AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 1995, 23:4407-4414.
  • [35]Ajmone-Marsan P, Valentini A, Cassandro M, Vecchiotti-Antaldi G, Bertoni G, Kuiper M: AFLP markers for DNA fingerprinting in cattle. Anim Genet 1997, 28:418-426.
  • [36]Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389-3402.
  • [37]Freeland JR: Molecular Ecology. West Sussex: John Wiley & Sons; 2005.
  • [38]Goudet J: FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 1995, 86:485-486.
  • [39]Rousset F: Genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 2008, 8:103-106.
  • [40]Felsenstein J: PHYLIP - Phylogeny Inference Package (version 3.2). Cladistics; 1989, 5:164-166
  • [41]Pritchard JK, Stephens M, Donnelly P: Inference of population structure using multilocus genotype data. Genetics 2000, 155:945-959.
  • [42]Jakobsson M, Rosenberg NA: CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 2007, 23:1801-1806.
  • [43]Rosenberg NA: DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 2004, 4:137-138.
  • [44]Evanno G, Regnaut S, Goudet J: Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 2005, 14:2611-2620.
  • [45]Earl DA, vonHoldt BM: STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 2012, 4:359-361.
  文献评价指标  
  下载次数:15次 浏览次数:46次