BMC Cell Biology | |
Physiological β-catenin signaling controls self-renewal networks and generation of stem-like cells from nasopharyngeal carcinoma | |
Maria Li Lung1  Marian L Waterman2  Paulisally Hau Yi Lo1  Pui Man Chiu1  Yee Peng Phoon1  Josephine Mun Yee Ko1  Arthur Kwok Leung Cheung1  Yue Cheng1  | |
[1] Department of Clinical Oncology, Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, L6-02, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China;Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697, USA | |
关键词: Cancer stem cell markers; Tumor suppressor genes; Stemness transition; Chromosome 3 transfer; Self-renewal network; Nasopharyngeal carcinoma; Physiological Wnt/β-catenin signaling; | |
Others : 856550 DOI : 10.1186/1471-2121-14-44 |
|
received in 2013-04-05, accepted in 2013-09-25, 发布年份 2013 | |
【 摘 要 】
Background
A few reports suggested that low levels of Wnt signaling might drive cell reprogramming, but these studies could not establish a clear relationship between Wnt signaling and self-renewal networks. There are ongoing debates as to whether and how the Wnt/β-catenin signaling is involved in the control of pluripotency gene networks. Additionally, whether physiological β-catenin signaling generates stem-like cells through interactions with other pathways is as yet unclear. The nasopharyngeal carcinoma HONE1 cells have low expression of β-catenin and wild-type expression of p53, which provided a possibility to study regulatory mechanism of stemness networks induced by physiological levels of Wnt signaling in these cells.
Results
Introduction of increased β-catenin signaling, haploid expression of β-catenin under control by its natural regulators in transferred chromosome 3, resulted in activation of Wnt/β-catenin networks and dedifferentiation in HONE1 hybrid cell lines, but not in esophageal carcinoma SLMT1 hybrid cells that had high levels of endogenous β-catenin expression. HONE1 hybrid cells displayed stem cell-like properties, including enhancement of CD24+ and CD44+ populations and generation of spheres that were not observed in parental HONE1 cells. Signaling cascades were detected in HONE1 hybrid cells, including activation of p53- and RB1-mediated tumor suppressor pathways, up-regulation of Nanog-, Oct4-, Sox2-, and Klf4-mediated pluripotency networks, and altered E-cadherin expression in both in vitro and in vivo assays. qPCR array analyses further revealed interactions of physiological Wnt/β-catenin signaling with other pathways such as epithelial-mesenchymal transition, TGF-β, Activin, BMPR, FGFR2, and LIFR- and IL6ST-mediated cell self-renewal networks. Using β-catenin shRNA inhibitory assays, a dominant role for β-catenin in these cellular network activities was observed. The expression of cell surface markers such as CD9, CD24, CD44, CD90, and CD133 in generated spheres was progressively up-regulated compared to HONE1 hybrid cells. Thirty-four up-regulated components of the Wnt pathway were identified in these spheres.
Conclusions
Wnt/β-catenin signaling regulates self-renewal networks and plays a central role in the control of pluripotency genes, tumor suppressive pathways and expression of cancer stem cell markers. This current study provides a novel platform to investigate the interaction of physiological Wnt/β-catenin signaling with stemness transition networks.
【 授权许可】
2013 Cheng et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140723032159713.pdf | 3311KB | download | |
88KB | Image | download | |
92KB | Image | download | |
75KB | Image | download | |
112KB | Image | download | |
143KB | Image | download | |
98KB | Image | download | |
136KB | Image | download |
【 图 表 】
【 参考文献 】
- [1]Fodde R, Brabletz T: Wnt/beta-catenin signaling in cancer stemness and malignant behavior. Curr Opin Cell Biol 2007, 19(2):150-158.
- [2]Kikuchi A, Yamamoto H, Sato A: Selective activation mechanisms of Wnt signaling pathways. Trends Cell Biol 2009, 19(3):119-129.
- [3]Reya T, Clevers H: Wnt signalling in stem cells and cancer. Nature 2005, 434(7035):843-850.
- [4]ten Berge D, Kurek D, Blauwkamp T, Koole W, Maas A, Eroglu E, Siu RK, Nusse R: Embryonic stem cells require Wnt proteins to prevent differentiation to epiblast stem cells. Nat Cell Biol 2011, 13(9):1070-1075.
- [5]Dravid G, Ye Z, Hammond H, Chen G, Pyle A, Donovan P, Yu X, Cheng L: Defining the role of Wnt/beta-catenin signaling in the survival, proliferation, and self-renewal of human embryonic stem cells. Stem Cells 2005, 23(10):1489-1501.
- [6]Kielman MF, Rindapaa M, Gaspar C, van Poppel N, Breukel C, van Leeuwen S, Taketo MM, Roberts S, Smits R, Fodde R: Apc modulates embryonic stem-cell differentiation by controlling the dosage of beta-catenin signaling. Nat Genet 2002, 32(4):594-605.
- [7]Vermeulen L, De Sousa EMF, van der Heijden M, Cameron K, de Jong JH, Borovski T, Tuynman JB, Todaro M, Merz C, Rodermond H, et al.: Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 2010, 12(5):468-476.
- [8]Clevers H, Nusse R: Wnt/beta-catenin signaling and disease. Cell 2012, 149(6):1192-1205.
- [9]Wray J, Hartmann C: WNTing embryonic stem cells. Trends Cell Biol 2012, 22(3):159-168.
- [10]Davidson KC, Adams AM, Goodson JM, McDonald CE, Potter JC, Berndt JD, Biechele TL, Taylor RJ, Moon RT: Wnt/beta-catenin signaling promotes differentiation, not self-renewal, of human embryonic stem cells and is repressed by Oct4. Proc Natl Acad Sci USA 2012, 109(12):4485-4490.
- [11]Cheng Y, Poulos NE, Lung ML, Hampton G, Ou B, Lerman MI, Stanbridge EJ: Functional evidence for a nasopharyngeal carcinoma tumor suppressor gene that maps at chromosome 3p21.3. Proc Natl Acad Sci USA 1998, 95(6):3042-3047.
- [12]Cheng Y, Stanbridge EJ, Kong H, Bengtsson U, Lerman MI, Lung ML: A functional investigation of tumor suppressor gene activities in a nasopharyngeal carcinoma cell line HONE1 using a monochromosome transfer approach. Genes Chromosomes Cancer 2000, 28(1):82-91.
- [13]Sun Y, Hegamyer G, Cheng YJ, Hildesheim A, Chen JY, Chen IH, Cao Y, Yao KT, Colburn NH: An infrequent point mutation of the p53 gene in human nasopharyngeal carcinoma. Proc Natl Acad Sci USA 1992, 89(14):6516-6520.
- [14]Sun Y, Hegamyer G, Colburn NH: Nasopharyngeal carcinoma shows no detectable retinoblastoma susceptibility gene alterations. Oncogene 1993, 8(3):791-795.
- [15]Hong H, Takahashi K, Ichisaka T, Aoi T, Kanagawa O, Nakagawa M, Okita K, Yamanaka S: Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature 2009, 460(7259):1132-1135.
- [16]Pajcini KV, Corbel SY, Sage J, Pomerantz JH, Blau HM: Transient inactivation of Rb and ARF yields regenerative cells from postmitotic mammalian muscle. Cell Stem Cell 2010, 7(2):198-213.
- [17]He S, Nakada D, Morrison SJ: Mechanisms of stem cell self-renewal. Annu Rev Cell Dev Biol 2009, 25:377-406.
- [18]Damalas A, Ben-Ze'ev A, Simcha I, Shtutman M, Leal JF, Zhurinsky J, Geiger B, Oren M: Excess beta-catenin promotes accumulation of transcriptionally active p53. EMBO J 1999, 18(11):3054-3063.
- [19]Kim NH, Kim HS, Kim NG, Lee I, Choi HS, Li XY, Kang SE, Cha SY, Ryu JK, Na JM, et al.: p53 and microRNA-34 are suppressors of canonical Wnt signaling. Sci Signal 2011, 4(197):ra71.
- [20]Lee KH, Li M, Michalowski AM, Zhang X, Liao H, Chen L, Xu Y, Wu X, Huang J: A genomewide study identifies the Wnt signaling pathway as a major target of p53 in murine embryonic stem cells. Proc Natl Acad Sci USA 2010, 107(1):69-74.
- [21]Lyashenko N, Winter M, Migliorini D, Biechele T, Moon RT, Hartmann C: Differential requirement for the dual functions of beta-catenin in embryonic stem cell self-renewal and germ layer formation. Nat Cell Biol 2011, 13(7):753-761.
- [22]Sokol SY: Maintaining embryonic stem cell pluripotency with Wnt signaling. Development 2011, 138(20):4341-4350.
- [23]Wray J, Kalkan T, Gomez-Lopez S, Eckardt D, Cook A, Kemler R, Smith A: Inhibition of glycogen synthase kinase-3 alleviates Tcf3 repression of the pluripotency network and increases embryonic stem cell resistance to differentiation. Nat Cell Biol 2011, 13(7):838-845.
- [24]Yi F, Pereira L, Hoffman JA, Shy BR, Yuen CM, Liu DR, Merrill BJ: Opposing effects of Tcf3 and Tcf1 control Wnt stimulation of embryonic stem cell self-renewal. Nat Cell Biol 2011, 13(7):762-770.
- [25]Merrill BJ: Develop-WNTs in somatic cell reprogramming. Cell Stem Cell 2008, 3(5):465-466.
- [26]Katoh M: WNT signaling pathway and stem cell signaling network. Clin Cancer Res 2007, 13(14):4042-4045.
- [27]Lluis F, Pedone E, Pepe S, Cosma MP: Periodic activation of Wnt/beta-catenin signaling enhances somatic cell reprogramming mediated by cell fusion. Cell Stem Cell 2008, 3(5):493-507.
- [28]van de Wetering M, Sancho E, Verweij C, de Lau W, Oving I, Hurlstone A, van der Horn K, Batlle E, Coudreuse D, Haramis AP, et al.: The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 2002, 111(2):241-250.
- [29]Chen T, Yuan D, Wei B, Jiang J, Kang J, Ling K, Gu Y, Li J, Xiao L, Pei G: E-cadherin-mediated cell-cell contact is critical for induced pluripotent stem cell generation. Stem Cells 2010, 28(8):1315-1325.
- [30]Scheel C, Eaton EN, Li SH, Chaffer CL, Reinhardt F, Kah KJ, Bell G, Guo W, Rubin J, Richardson AL, et al.: Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell 2011, 145(6):926-940.
- [31]Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM: Embryonic stem cell lines derived from human blastocysts. Science 1998, 282(5391):1145-1147.
- [32]Cheng Y, Chakrabarti R, Garcia-Barcelo M, Ha TJ, Srivatsan ES, Stanbridge EJ, Lung ML: Mapping of nasopharyngeal carcinoma tumor-suppressive activity to a 1.8-megabase region of chromosome band 11q13. Genes Chromosomes Cancer 2002, 34(1):97-103.
- [33]Lung HL, Cheung AK, Ko JM, Cheng Y, Stanbridge EJ, Lung ML: Deciphering the molecular genetic basis of NPC through functional approaches. Semin Cancer Biol 2012, 22(2):87-95.
- [34]Cheng Y, Ko JM, Lung HL, Lo PH, Stanbridge EJ, Lung ML: Monochromosome transfer provides functional evidence for growth-suppressive genes on chromosome 14 in nasopharyngeal carcinoma. Genes Chromosomes Cancer 2003, 37(4):359-368.
- [35]Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH: Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 2004, 10(1):55-63.
- [36]Lo PH, Leung AC, Kwok CY, Cheung WS, Ko JM, Yang LC, Law S, Wang LD, Li J, Stanbridge EJ, et al.: Identification of a tumor suppressive critical region mapping to 3p14.2 in esophageal squamous cell carcinoma and studies of a candidate tumor suppressor gene, ADAMTS9. Oncogene 2007, 26(1):148-157.
- [37]Batlle E, Henderson JT, Beghtel H, van den Born MM, Sancho E, Huls G, Meeldijk J, Robertson J, van de Wetering M, Pawson T, et al.: Beta-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell 2002, 111(2):251-263.
- [38]Lowry WE, Blanpain C, Nowak JA, Guasch G, Lewis L, Fuchs E: Defining the impact of beta-catenin/Tcf transactivation on epithelial stem cells. Genes Dev 2005, 19(13):1596-1611.
- [39]Luis TC, Naber BA, Roozen PP, Brugman MH, de Haas EF, Ghazvini M, Fibbe WE, van Dongen JJ, Fodde R, Staal FJ: Canonical wnt signaling regulates hematopoiesis in a dosage-dependent fashion. Cell Stem Cell 2011, 9(4):345-356.
- [40]Ocana OH, Corcoles R, Fabra A, Moreno-Bueno G, Acloque H, Vega S, Barrallo-Gimeno A, Cano A, Nieto MA: Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer prrx1. Cancer Cell 2012, 22(6):709-724.
- [41]Li R, Liang J, Ni S, Zhou T, Qing X, Li H, He W, Chen J, Li F, Zhuang Q, et al.: A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 2010, 7(1):51-63.
- [42]Soncin F, Mohamet L, Eckardt D, Ritson S, Eastham AM, Bobola N, Russell A, Davies S, Kemler R, Merry CL, et al.: Abrogation of E-cadherin-mediated cell-cell contact in mouse embryonic stem cells results in reversible LIF-independent self-renewal. Stem Cells 2009, 27(9):2069-2080.
- [43]Cheung AKL, Phoon YP, Lung HL, Ko JMY, Cheng Y, Lung ML: Roles of tumor suppressor signaling on reprogramming and stemness transition in somatic cells. In Future aspects of tumor suppressor gene. Edited by Cheng Y. Croatia: InTech; 2013:75-96.
- [44]Glaser R, Zhang HY, Yao KT, Zhu HC, Wang FX, Li GY, Wen DS, Li YP: Two epithelial tumor cell lines (HNE-1 and HONE-1) latently infected with Epstein-Barr virus that were derived from nasopharyngeal carcinomas. Proc Natl Acad Sci USA 1989, 86(23):9524-9528.
- [45]Sarbassov DD, Guertin DA, Ali SM, Sabatini DM: Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005, 307(5712):1098-1101.
- [46]Firestein R, Bass AJ, Kim SY, Dunn IF, Silver SJ, Guney I, Freed E, Ligon AH, Vena N, Ogino S, et al.: CDK8 is a colorectal cancer oncogene that regulates beta-catenin activity. Nature 2008, 455(7212):547-551.
- [47]Atcha FA, Syed A, Wu B, Hoverter NP, Yokoyama NN, Ting JH, Munguia JE, Mangalam HJ, Marsh JL, Waterman ML: A unique DNA binding domain converts T-cell factors into strong Wnt effectors. Mol Cell Biol 2007, 27(23):8352-8363.
- [48]Arce L, Yokoyama NN, Waterman ML: Diversity of LEF/TCF action in development and disease. Oncogene 2006, 25(57):7492-7504.
- [49]Cheung AK, Lung HL, Ko JM, Cheng Y, Stanbridge EJ, Zabarovsky ER, Nicholls JM, Chua D, Tsao SW, Guan XY, et al.: Chromosome 14 transfer and functional studies identify a candidate tumor suppressor gene, mirror image polydactyly 1, in nasopharyngeal carcinoma. Proc Natl Acad Sci USA 2009, 106(34):14478-14483.