期刊论文详细信息
BMC Pediatrics
PPREMO: a prospective cohort study of preterm infant brain structure and function to predict neurodevelopmental outcome
Sasaka E. Bandaranayake4  Christine M. Finn5  Alan Coulthard2  Robert S. Ware6  Annice HT Kong3  Melissa M. Lai3  Barbara E. Lingwood3  Jurgen Fripp1  Kerstin Pannek1  Stephen E. Rose1  Paul B. Colditz3  Roslyn N. Boyd4  Joanne M. George5 
[1] Digital Productivity Flagship, The Australian e-Health Research Centre, CSIRO, Brisbane, Australia;Academic Discipline of Medical Imaging, School of Medicine, Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane, Australia;University of Queensland Centre for Clinical Research, Faculty of Medicine and Biomedical Sciences, The University of Queensland, Royal Brisbane and Women’s Hospital, Brisbane, Australia;Queensland Paediatric Rehabilitation Service, Lady Cilento Children’s Hospital, Brisbane, Australia;Queensland Cerebral Palsy and Rehabilitation Research Centre, School of Medicine, Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane, Australia;Queensland Children’s Medical Research Institute, Children’s Health Queensland Hospitals and Health Service, Brisbane, Australia
关键词: Outcomes;    Prediction;    Neurodevelopment;    Neurobehaviour;    Neuromotor;    Neurological;    Magnetic resonance imaging;    Preterm;   
Others  :  1225224
DOI  :  10.1186/s12887-015-0439-z
 received in 2015-01-21, accepted in 2015-09-01,  发布年份 2015
PDF
【 摘 要 】

Background

More than 50 percent of all infants born very preterm will experience significant motor and cognitive impairment. Provision of early intervention is dependent upon accurate, early identification of infants at risk of adverse outcomes. Magnetic resonance imaging at term equivalent age combined with General Movements assessment at 12 weeks corrected age is currently the most accurate method for early prediction of cerebral palsy at 12 months corrected age. To date no studies have compared the use of earlier magnetic resonance imaging combined with neuromotor and neurobehavioural assessments (at 30 weeks postmenstrual age) to predict later motor and neurodevelopmental outcomes including cerebral palsy (at 12–24 months corrected age). This study aims to investigate i) the relationship between earlier brain imaging and neuromotor/neurobehavioural assessments at 30 and 40 weeks postmenstrual age, and ii) their ability to predict motor and neurodevelopmental outcomes at 3 and 12 months corrected age.

Methods/design

This prospective cohort study will recruit 80 preterm infants born ≤30 week’s gestation and a reference group of 20 healthy term born infants from the Royal Brisbane & Women’s Hospital in Brisbane, Australia. Infants will undergo brain magnetic resonance imaging at approximately 30 and 40 weeks postmenstrual age to develop our understanding of very early brain structure at 30 weeks and maturation that occurs between 30 and 40 weeks postmenstrual age. A combination of neurological (Hammersmith Neonatal Neurologic Examination), neuromotor (General Movements, Test of Infant Motor Performance), neurobehavioural (NICU Network Neurobehavioural Scale, Premie-Neuro) and visual assessments will be performed at 30 and 40 weeks postmenstrual age to improve our understanding of the relationship between brain structure and function. These data will be compared to motor assessments at 12 weeks corrected age and motor and neurodevelopmental outcomes at 12 months corrected age (neurological assessment by paediatrician, Bayley scales of Infant and Toddler Development, Alberta Infant Motor Scale, Neurosensory Motor Developmental Assessment) to differentiate atypical development (including cerebral palsy and/or motor delay).

Discussion

Earlier identification of those very preterm infants at risk of adverse neurodevelopmental and motor outcomes provides an additional period for intervention to optimise outcomes.

Trial registration

Australian New Zealand Clinical Trials Registry ACTRN12613000280707. Registered 8 March 2013.

【 授权许可】

   
2015 George et al.

【 预 览 】
附件列表
Files Size Format View
20150919020838177.pdf 1055KB PDF download
Fig. 1. 62KB Image download
【 图 表 】

Fig. 1.

【 参考文献 】
  • [1]Doyle LW. Evaluation of neonatal intensive care for extremely low birth weight infants in Victoria over two decades: II. Efficiency. Pediatrics. 2004; 113(3):510-514.
  • [2]Holsti L, Grunau RVE, Whitfield MF. Developmental coordination disorder in extremely low birth weight children at nine years. J Dev Behav Pediatr. 2002; 23(1):9.
  • [3]Williams J, Lee KJ, Anderson PJ. Prevalence of motor-skill impairment in preterm children who do not develop cerebral palsy: a systematic review. Dev Med Child Neurol. 2010; 52(3):232-237.
  • [4]Mathur A, Inder T. Magnetic resonance imaging--insights into brain injury and outcomes in premature infants. J Commun Disord. 2009; 42(4):248-255.
  • [5]Mikkola K, Ritari N, Tommiska V, Salokorpi T, Lehtonen L, Tammela O et al.. Neurodevelopmental outcome at 5 years of age of a national cohort of extremely low birth weight infants who were born in 1996–1997. Pediatrics. 2005; 116(6):1391-1400.
  • [6]Spittle AJ, Boyd RN, Inder TE, Doyle LW. Predicting motor development in very preterm infants at 12 months’ corrected age: the role of qualitative magnetic resonance imaging and general movements assessments. Pediatrics. 2009; 123(2):512-517.
  • [7]Skiold B, Eriksson C, Eliasson AC, Aden U, Vollmer B. General movements and magnetic resonance imaging in the prediction of neuromotor outcome in children born extremely preterm. Early Hum Dev. 2013. doi:10.1016/j.earlhumdev.2013.03.014.
  • [8]Woodward LJ, Anderson PJ, Austin NC, Howard K, Inder TE. Neonatal MRI to predict neurodevelopmental outcomes in preterm infants. N Engl J Med. 2006; 355(7):685-694.
  • [9]Spittle AJ, Cheong J, Doyle LW, Roberts G, Lee KJ, Lim J et al.. Neonatal white matter abnormality predicts childhood motor impairment in very preterm children. Dev Med Child Neurol. 2011; 53(11):1000-1006.
  • [10]Bosanquet M, Copeland L, Ware R, Boyd R. A systematic review of tests to predict cerebral palsy in young children. Dev Med Child Neurol. 2013; 55(5):418-426.
  • [11]Nanba Y, Matsui K, Aida N, Sato Y, Toyoshima K, Kawataki M et al.. Magnetic resonance imaging regional T1 abnormalities at term accurately predict motor outcome in preterm infants. Pediatrics. 2007; 120(1):e10-e19.
  • [12]van der Aa NE, Verhage CH, Groenendaal F, Vermeulen RJ, de Bode S, van Nieuwenhuizen O et al. Neonatal neuroimaging predicts recruitment of contralesional corticospinal tracts following perinatal brain injury. Dev Med Child Neurol. 2013. doi:10.1111/dmcn.12160.
  • [13]Krageloh-Mann I, Horber V. The role of magnetic resonance imaging in elucidating the pathogenesis of cerebral palsy: a systematic review. Dev Med Child Neurol. 2007; 49(2):144-151.
  • [14]Mirmiran M, Barnes PD, Keller K, Constantinou JC, Fleisher BE, Hintz SR et al.. Neonatal brain magnetic resonance imaging before discharge is better than serial cranial ultrasound in predicting cerebral palsy in very low birth weight preterm infants. Pediatrics. 2004; 114(4):992-998.
  • [15]Dubois J, Benders M, Borradori-Tolsa C, Cachia A, Lazeyras F, Ha-Vinh Leuchter R et al.. Primary cortical folding in the human newborn: an early marker of later functional development. Brain. 2008; 131(Pt 8):2028-2041.
  • [16]Miller SP, Ferriero DM, Leonard C, Piecuch R, Glidden DV, Partridge JC et al.. Early brain injury in premature newborns detected with magnetic resonance imaging is associated with adverse early neurodevelopmental outcome. J Pediatr. 2005; 147(5):609-616.
  • [17]Volpe JJ. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol. 2009; 8(1):110-124.
  • [18]Arzoumanian Y, Mirmiran M, Barnes PD, Woolley K, Ariagno RL, Moseley ME et al.. Diffusion tensor brain imaging findings at term-equivalent age may predict neurologic abnormalities in low birth weight preterm infants. AJNR Am J Neuroradiol. 2003; 24(8):1646-1653.
  • [19]Rose J, Mirmiran M, Butler EE, Lin CY, Barnes PD, Kermoian R et al.. Neonatal microstructural development of the internal capsule on diffusion tensor imaging correlates with severity of gait and motor deficits. Dev Med Child Neurol. 2007; 49(10):745-750.
  • [20]Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J. 1994; 66(1):259-267.
  • [21]Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G. Diffusion tensor MR imaging of the human brain. Radiology. 1996; 201(3):637-648.
  • [22]Dubois J, Dehaene-Lambertz G, Perrin M, Mangin JF, Cointepas Y, Duchesnay E et al.. Asynchrony of the early maturation of white matter bundles in healthy infants: quantitative landmarks revealed noninvasively by diffusion tensor imaging. Hum Brain Mapp. 2008; 29(1):14-27.
  • [23]Counsell SJ, Edwards AD, Chew AT, Anjari M, Dyet LE, Srinivasan L et al.. Specific relations between neurodevelopmental abilities and white matter microstructure in children born preterm. Brain. 2008; 131(Pt 12):3201-3208.
  • [24]Dudink J, Lequin M, van Pul C, Buijs J, Conneman N, van Goudoever J et al.. Fractional anisotropy in white matter tracts of very-low-birth-weight infants. Pediatr Radiol. 2007; 37(12):1216-1223.
  • [25]De Bruine FT, Van Wezel-Meijler G, Leijser LM, Steggerda SJ, Van Den Berg-Huysmans AA, Rijken M et al. Tractography of white-matter tracts in very preterm infants: a 2-year follow-up study. Dev Med Child Neurol. 2013. doi:10.1111/dmcn.12099.
  • [26]Krishnan ML, Dyet LE, Boardman JP, Kapellou O, Allsop JM, Cowan F et al.. Relationship between white matter apparent diffusion coefficients in preterm infants at term-equivalent age and developmental outcome at 2 years. Pediatrics. 2007; 120(3):e604-e609.
  • [27]Thompson DK, Inder TE, Faggian N, Warfield SK, Anderson PJ, Doyle LW et al.. Corpus callosum alterations in very preterm infants: perinatal correlates and 2 year neurodevelopmental outcomes. Neuroimage. 2012; 59(4):3571-3581.
  • [28]Pannek K, Scheck SM, Colditz PB, Boyd RN, Rose SE. Magnetic resonance diffusion tractography of the preterm infant brain: a systematic review. Dev Med Child Neurol. 2013. doi:10.1111/dmcn.12250.
  • [29]Dubois J, Dehaene-Lambertz G, Kulikova S, Poupon C, Huppi PS, Hertz-Pannier L. The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants. Neuroscience. 2014; 276:48-71.
  • [30]Pannek K, Guzzetta A, Colditz PB, Rose SE. Diffusion MRI of the neonate brain: acquisition, processing and analysis techniques. Pediatr Radiol. 2012. doi:10.1007/s00247-012-2427-x.
  • [31]Raffelt D, Tournier JD, Rose S, Ridgway GR, Henderson R, Crozier S et al.. Apparent Fibre Density: a novel measure for the analysis of diffusion-weighted magnetic resonance images. Neuroimage. 2012; 59(4):3976-3994.
  • [32]Arthurs OJ, Edwards A, Austin T, Graves MJ, Lomas DJ. The challenges of neonatal magnetic resonance imaging. Pediatr Radiol. 2012. doi:10.1007/s00247-012-2430-2.
  • [33]Benavente-Fernandez I, Lubian-Lopez PS, Zuazo-Ojeda MA, Jimenez-Gomez G, Lechuga-Sancho AM. Safety of magnetic resonance imaging in preterm infants. Acta Paediatr. 2010; 99(6):850-853.
  • [34]Neubauer V, Fau-Griesmaier E, Griesmaier E, Fau-Baumgartner K, Baumgartner K, Fau-Mallouhi A et al.. Feasibility of cerebral MRI in non-sedated preterm-born infants at term-equivalent age: report of a single centre. Acta Paediatr. 2011; 100:1544-1547.
  • [35]O’Regan K, Filan P, Pandit N, Maher M, Fanning N. Image quality associated with the use of an MR-compatible incubator in neonatal neuroimaging. Br J Radiol. 2012; 85(1012):363-367.
  • [36]Lane A, Chuk LM, Colditz PB, Coulthard A. The MRI-compatible neonatal incubator in practice. J Paediatr Child Health. 2013. doi:10.1111/jpc.12222.
  • [37]Plaisier A, Raets MM, van der Starre C, Feijen-Roon M, Govaert P, Lequin MH et al. Safety of routine early MRI in preterm infants. Pediatr Radiol. 2012. doi:10.1007/s00247-012-2426-y.
  • [38]Mrzljak L, Uylings HB, Kostovic I, Van Eden CG. Prenatal development of neurons in the human prefrontal cortex: I. A qualitative Golgi study. J Comp Neurol. 1988; 271(3):355-386.
  • [39]Bystron I, Blakemore C, Rakic P. Development of the human cerebral cortex: Boulder Committee revisited. Nat Rev Neurosci. 2008; 9(2):110-122.
  • [40]Chi JG, Dooling EC, Gilles FH. Gyral development of the human brain. Ann Neurol. 1977; 1(1):86-93.
  • [41]Bengoetxea H, Ortuzar N, Bulnes S, Rico-Barrio I, Lafuente JV, Argandona EG. Enriched and deprived sensory experience induces structural changes and rewires connectivity during the postnatal development of the brain. Neural Plast. 2012; 2012:305693.
  • [42]Kostovic I, Rakic P. Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain. J Comp Neurol. 1990; 297(3):441-470.
  • [43]de Graaf-Peters VB, Hadders-Algra M. Ontogeny of the human central nervous system: what is happening when? Early Hum Dev. 2006; 82(4):257-266.
  • [44]Kostovic I, Jovanov-Milosevic N. The development of cerebral connections during the first 20–45 weeks’ gestation. Semin Fetal Neonatal Med. 2006; 11(6):415-422.
  • [45]Kostovic I, Kostovic-Srzentic M, Benjak V, Jovanov-Milosevic N, Rados M. Developmental dynamics of radial vulnerability in the cerebral compartments in preterm infants and neonates. Front Neurol. 2014; 5:139.
  • [46]Boersma M, Smit DJ, de Bie HM, Van Baal GC, Boomsma DI, de Geus EJ et al.. Network analysis of resting state EEG in the developing young brain: structure comes with maturation. Hum Brain Mapp. 2011; 32(3):413-425.
  • [47]Gasser T, Jennen-Steinmetz C, Sroka L, Verleger R, Mocks J. Development of the EEG of school-age children and adolescents. II. Topography. Electroencephalogr Clin Neurophysiol. 1988; 69(2):100-109.
  • [48]Gasser T, Verleger R, Bacher P, Sroka L. Development of the EEG of school-age children and adolescents. I. Analysis of band power. Electroencephalogr Clin Neurophysiol. 1988; 69(2):91-99.
  • [49]Vanhatalo S, Kaila K. Development of neonatal EEG activity: from phenomenology to physiology. Semin Fetal Neonatal Med. 2006; 11(6):471-478.
  • [50]Zhu C, Guo X, Jin Z, Sun J, Qiu Y, Zhu Y et al.. Influences of brain development and ageing on cortical interactive networks. Clin Neurophysiol. 2011; 122(2):278-283.
  • [51]El-Ayouty M, Abdel-Hady H, El-Mogy S, Zaghlol H, El-Beltagy M, Aly H. Relationship between electroencephalography and magnetic resonance imaging findings after hypoxic-ischemic encephalopathy at term. Am J Perinatol. 2007; 24(8):467-473.
  • [52]Wikstrom S, Pupp IH, Rosen I, Norman E, Fellman V, Ley D et al.. Early single-channel aEEG/EEG predicts outcome in very preterm infants. Acta Paediatr. 2012; 101(7):719-726.
  • [53]Klebermass K, Olischar M, Waldhoer T, Fuiko R, Pollak A, Weninger M. Amplitude-integrated EEG pattern predicts further outcome in preterm infants. Pediatr Res. 2011; 70(1):102-108.
  • [54]Riviello JJ. Pediatric EEG Abnormalities. The Clinical Neurophysiology Primer. Springer, New York; 2007.
  • [55]Bell AH, McClure BG, McCullagh PJ, McClelland RJ. Variation in power spectral analysis of the EEG with gestational age. J Clin Neurophysiol. 1991; 8(3):312-319.
  • [56]Jenni OG, Borbely AA, Achermann P. Development of the nocturnal sleep electroencephalogram in human infants. Am J Physiol Regul Integr Comp Physiol. 2004; 286(3):R528-R538.
  • [57]Niemarkt HJ, Jennekens W, Pasman JW, Katgert T, Van Pul C, Gavilanes AW et al.. Maturational changes in automated EEG spectral power analysis in preterm infants. Pediatr Res. 2011; 70(5):529-534.
  • [58]Tolonen M, Palva JM, Andersson S, Vanhatalo S. Development of the spontaneous activity transients and ongoing cortical activity in human preterm babies. Neuroscience. 2007; 145(3):997-1006.
  • [59]Graziadio S, Basu A, Tomasevic L, Zappasodi F, Tecchio F, Eyre JA. Developmental tuning and decay in senescence of oscillations linking the corticospinal system. J Neurosci. 2010; 30(10):3663-3674.
  • [60]Mathew P, Pannek K, Snow P, D’Acunto MG, Guzzetta A, Rose SE et al.. Maturation of corpus callosum anterior midbody is associated with neonatal motor function in eight preterm-born infants. Neural Plast. 2013; 2013:359532.
  • [61]Pannek K, Hatzigeorgiou X, Colditz PB, Rose S. Assessment of structural connectivity in the preterm brain at term equivalent age using diffusion MRI and t2 relaxometry: a network-based analysis. PLoS One. 2013; 8(8):e68593.
  • [62]Blankenship AG, Feller MB. Mechanisms underlying spontaneous patterned activity in developing neural circuits. Nat Rev Neurosci. 2010; 11(1):18-29.
  • [63]Omidvarnia A, Fransson P, Metsaranta M, Vanhatalo S. Functional bimodality in the brain networks of preterm and term human newborns. Cereb Cortex. 2014; 24(10):2657-2668.
  • [64]Noble Y, Boyd R. Neonatal assessments for the preterm infant up to 4 months corrected age: a systematic review. Dev Med Child Neurol. 2012; 54(2):129-139.
  • [65]Spittle AJ, Doyle LW, Boyd RN. A systematic review of the clinimetric properties of neuromotor assessments for preterm infants during the first year of life. Dev Med Child Neurol. 2008; 50(4):254-266.
  • [66]Einspieler C. Prechtl’s method on the qualitative assessment of general movements in preterm, term and young infants. vol Book, Whole. Mac Keith Press, Cambridge, UK; 2004.
  • [67]Bruggink JL, Cioni G, Einspieler C, Maathuis CG, Pascale R, Bos AF. Early motor repertoire is related to level of self-mobility in children with cerebral palsy at school age. Dev Med Child Neurol. 2009; 51(11):878-885.
  • [68]Bruggink JL, Van Braeckel KN, Bos AF. The early motor repertoire of children born preterm is associated with intelligence at school age. Pediatrics. 2010; 125(6):e1356-e1363.
  • [69]Bruggink JL, Einspieler C, Butcher PR, Van Braeckel KN, Prechtl HF, Bos AF. The quality of the early motor repertoire in preterm infants predicts minor neurologic dysfunction at school age. J Pediatr. 2008; 153(1):32-39.
  • [70]Hadders-Algra M, Bouwstra H, Groen SE. Quality of general movements and psychiatric morbidity at 9 to 12 years. Early Hum Dev. 2009; 85(1):1-6.
  • [71]Lester BM, Miller RJ, Hawes K, Salisbury A, Bigsby R, Sullivan MC et al.. Infant neurobehavioral development. Semin Perinatol. 2011; 35(1):8-19.
  • [72]Brown NC, Inder TE, Bear MJ, Hunt RW, Anderson PJ, Doyle LW. Neurobehavior at term and white and gray matter abnormalities in very preterm infants. J Pediatr. 2009; 155(1):32-38.
  • [73]Pineda RG, Tjoeng TH, Vavasseur C, Kidokoro H, Neil JJ, Inder T. Patterns of altered neurobehavior in preterm infants within the neonatal intensive care unit. J Pediatr. 2013; 162(3):470-476.
  • [74]Constantinou JC, Adamson-Macedo EN, Mirmiran M, Fleisher BE. Movement, imaging and neurobehavioral assessment as predictors of cerebral palsy in preterm infants. J Perinatol. 2007; 27(4):225-229.
  • [75]Stephens BE, Liu J, Lester B, Lagasse L, Shankaran S, Bada H et al.. Neurobehavioral assessment predicts motor outcome in preterm infants. J Pediatr. 2010; 156(3):366-371.
  • [76]Romeo DM, Cioni M, Palermo F, Cilauro S, Romeo MG. Neurological assessment in infants discharged from a neonatal intensive care unit. Eur J Paediatr Neurol. 2013; 17(2):192-198.
  • [77]Palmer FB. Strategies for the early diagnosis of cerebral palsy. J Pediatr. 2004; 145(2 Suppl):S8-S11.
  • [78]Ferrari F, Cioni G, Einspieler C, Roversi MF, Bos AF, Paolicelli PB et al.. Cramped synchronized general movements in preterm infants as an early marker for cerebral palsy. Arch Pediatr Adolesc Med. 2002; 156(5):460-467.
  • [79]Lacey JL, Rudge S, Rieger I, Osborn DA. Assessment of neurological status in preterm infants in neonatal intensive care and prediction of cerebral palsy. Aust J Physiother. 2004; 50(3):137-144.
  • [80]Woodward LJ, Mogridge N, Wells SW, Inder TE. Can neurobehavioral examination predict the presence of cerebral injury in the very low birth weight infant? Journal of developmental and behavioral pediatrics : JDBP. 2004; 25(5):326-334.
  • [81]Cioni G, Ferrari F, Einspieler C, Paolicelli PB, Barbani MT, Prechtl HF. Comparison between observation of spontaneous movements and neurologic examination in preterm infants. J Pediatr. 1997; 130(5):704-711.
  • [82]Stoltz Sjostrom E, Ohlund I, Ahlsson F, Engstrom E, Fellman V, Hellstrom A et al.. Nutrient intakes independently affect growth in extremely preterm infants: results from a population-based study. Acta Paediatr. 2013; 102(11):1067-1074.
  • [83]Belfort MB, Rifas-Shiman SL, Sullivan T, Collins CT, McPhee AJ, Ryan P et al.. Infant growth before and after term: effects on neurodevelopment in preterm infants. Pediatrics. 2011; 128(4):e899-e906.
  • [84]Ehrenkranz RA, Dusick AM, Vohr BR, Wright LL, Wrage LA, Poole WK. Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants. Pediatrics. 2006; 117(4):1253-1261.
  • [85]Moltu SJ, Blakstad EW, Strommen K, Almaas AN, Nakstad B, Ronnestad A et al.. Enhanced feeding and diminished postnatal growth failure in very-low-birth-weight infants. J Pediatr Gastroenterol Nutr. 2014; 58(3):344-351.
  • [86]Morgan C, McGowan P, Herwitker S, Hart AE, Turner MA. Postnatal head growth in preterm infants: a randomized controlled parenteral nutrition study. Pediatrics. 2014; 133(1):e120-e128.
  • [87]Moyses HE, Johnson MJ, Leaf AA, Cornelius VR. Early parenteral nutrition and growth outcomes in preterm infants: a systematic review and meta-analysis. Am J Clin Nutr. 2013; 97(4):816-826.
  • [88]Romeo DM, Guzzetta A, Scoto M, Cioni M, Patusi P, Mazzone D et al.. Early neurologic assessment in preterm-infants: integration of traditional neurologic examination and observation of general movements. Eur J Paediatr Neurol. 2008; 12(3):183-189.
  • [89]Setanen S, Lahti K, Lehtonen L, Parkkola R, Maunu J, Saarinen K et al.. Neurological examination combined with brain MRI or cranial US improves prediction of neurological outcome in preterm infants. Early Hum Dev. 2014; 90(12):851-856.
  • [90]Spittle AJ, Brown NC, Doyle LW, Boyd RN, Hunt RW, Bear M et al.. Quality of general movements is related to white matter pathology in very preterm infants. Pediatrics. 2008; 121(5):e1184-e1189.
  • [91]Lodygensky GA, Seghier ML, Warfield SK, Tolsa CB, Sizonenko S, Lazeyras F et al.. Intrauterine growth restriction affects the preterm infant’s hippocampus. Pediatr Res. 2008; 63(4):438-443.
  • [92]Rose J, Vassar R, Cahill-Rowley K, Stecher Guzman X, Hintz SR, Stevenson DK et al.. Neonatal physiological correlates of near-term brain development on MRI and DTI in very-low-birth-weight preterm infants. NeuroImage Clinical. 2014; 5:169-177.
  • [93]Inder TE, Warfield SK, Wang H, Huppi PS, Volpe JJ. Abnormal cerebral structure is present at term in premature infants. Pediatrics. 2005; 115(2):286-294.
  • [94]Orcesi S, Olivieri I, Longo S, Perotti G, La Piana R, Tinelli C et al.. Neurodevelopmental outcome of preterm very low birth weight infants born from 2005 to 2007. Eur J Paediatr Neurol. 2012; 16(6):716-723.
  • [95]Chow SSW. Report of the Australian and New Zealand Neonatal Network 2012. Sydney, ANZNN; 2014.
  • [96]Chawla S, Bapat R, Pappas A, Bara R, Zidan M, Natarajan G. Neurodevelopmental outcome of extremely premature infants exposed to incomplete, no or complete antenatal steroids. J Matern Fetal Neonatal Med. 2013; 26(15):1542-1547.
  • [97]Roberts D, Dalziel S. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. The Cochrane database of systematic reviews. 2006; 3:Cd004454.
  • [98]Doyle LW, Crowther CA, Middleton P, Marret S, Rouse D. Magnesium sulphate for women at risk of preterm birth for neuroprotection of the fetus. The Cochrane database of systematic reviews. 2009; 1:Cd004661.
  • [99]Abdel-Latif ME, Bajuk B, Ward M, Oei JL, Badawi N. Neurodevelopmental outcomes of extremely premature infants conceived after assisted conception: a population based cohort study. Arch Dis Child Fetal Neonatal Ed. 2013; 98(3):F205-F211.
  • [100]Gnanendran L, Bajuk B, Oei J, Lui K, Abdel-Latif ME. Neurodevelopmental outcomes of preterm singletons, twins and higher-order gestations: a population-based cohort study. Arch Dis Child Fetal Neonatal Ed. 2014. doi:10.1136/archdischild-2013-305677.
  • [101]Doyle LW, Roberts G, Anderson PJ. Victorian Infant Collaborative Study G. Changing long-term outcomes for infants 500–999 g birth weight in Victoria, 1979–2005. Arch Dis Child Fetal Neonatal Ed. 2011; 96(6):F443-F447.
  • [102]Wood NS, Marlow N, Costeloe K, Gibson AT, Wilkinson AR. Neurologic and developmental disability after extremely preterm birth. EPICure Study Group. N Engl J Med. 2000; 343(6):378-384.
  • [103]Marlow N, Wolke D, Bracewell MA, Samara M. Neurologic and developmental disability at six years of age after extremely preterm birth. N Engl J Med. 2005; 352(1):9-19.
  • [104]Marlow N, Hennessy EM, Bracewell MA, Wolke D, Group EPS. Motor and executive function at 6 years of age after extremely preterm birth. Pediatrics. 2007; 120(4):793-804.
  • [105]Tolsa CB, Zimine S, Warfield SK, Freschi M, Sancho Rossignol A, Lazeyras F et al.. Early alteration of structural and functional brain development in premature infants born with intrauterine growth restriction. Pediatr Res. 2004; 56(1):132-138.
  • [106]Regev RH, Reichman B. Prematurity and intrauterine growth retardation--double jeopardy? Clin Perinatol. 2004; 31(3):453-473.
  • [107]De Jesus LC, Pappas A, Shankaran S, Li L, Das A, Bell EF et al. Outcomes of Small for Gestational Age Infants Born at <27 Weeks’ Gestation. J Pediatr. 2013. doi:10.1016/j.jpeds.2012.12.097.
  • [108]Papile LA, Burstein J, Burstein R, Koffler H. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. J Pediatr. 1978; 92(4):529-534.
  • [109]Salhab WA, Perlman JM, Silver L, Sue BR. Necrotizing enterocolitis and neurodevelopmental outcome in extremely low birth weight infants <1000 g. J Perinatol. 2004; 24(9):534-540.
  • [110]Schlapbach LJ, Aebischer M, Adams M, Natalucci G, Bonhoeffer J, Latzin P et al.. Impact of sepsis on neurodevelopmental outcome in a Swiss National Cohort of extremely premature infants. Pediatrics. 2011; 128(2):e348-e357.
  • [111]Wood NS, Costeloe K, Gibson AT, Hennessy EM, Marlow N, Wilkinson AR. The EPICure study: associations and antecedents of neurological and developmental disability at 30 months of age following extremely preterm birth. Arch Dis Child Fetal Neonatal Ed. 2005; 90(2):F134-F140.
  • [112]Spittle AJ, Treyvaud K, Doyle LW, Roberts G, Lee KJ, Inder TE et al.. Early emergence of behavior and social-emotional problems in very preterm infants. J Am Acad Child Adolesc Psychiatry. 2009; 48(9):909-918.
  • [113]Hack M. Survival and neurodevelopmental outcomes of preterm infants. J Pediatr Gastroenterol Nutr. 2007; 45 Suppl 3:S141-S142.
  • [114]Short EJ, Klein NK, Lewis BA, Fulton S, Eisengart S, Kercsmar C et al.. Cognitive and academic consequences of bronchopulmonary dysplasia and very low birth weight: 8-year-old outcomes. Pediatrics. 2003; 112(5):e359.
  • [115]Hoekstra RE, Ferrara TB, Couser RJ, Payne NR, Connett JE. Survival and long-term neurodevelopmental outcome of extremely premature infants born at 23–26 weeks’ gestational age at a tertiary center. Pediatrics. 2004; 113(1 Pt 1):e1-e6.
  • [116]Hack M, Fanaroff AA. Outcomes of children of extremely low birthweight and gestational age in the 1990s. Semin Neonatol. 2000; 5(2):89-106.
  • [117]Vohr BR, Wright LL, Dusick AM, Mele L, Verter J, Steichen JJ et al.. Neurodevelopmental and functional outcomes of extremely low birth weight infants in the National Institute of Child Health and Human Development Neonatal Research Network, 1993–1994. Pediatrics. 2000; 105(6):1216-1226.
  • [118]Delobel-Ayoub M, Kaminski M, Marret S, Burguet A, Marchand L, N’Guyen S et al.. Behavioral outcome at 3 years of age in very preterm infants: the EPIPAGE study. Pediatrics. 2006; 117(6):1996-2005.
  • [119]Gidrewicz DA, Fenton TR. A systematic review and meta-analysis of the nutrient content of preterm and term breast milk. BMC Pediatr. 2014; 14:216.
  • [120]Treyvaud K, Ure A, Doyle LW, Lee KJ, Rogers CE, Kidokoro H et al. Psychiatric outcomes at age seven for very preterm children: rates and predictors. J Child Psychol Psychiatry. 2013. doi:10.1111/jcpp.12040.
  • [121]Hack M, Breslau N, Aram D, Weissman B, Klein N, Borawski-Clark E. The effect of very low birth weight and social risk on neurocognitive abilities at school age. J Dev Behav Pediatr. 1992; 13(6):412-420.
  • [122]Roberts G, Howard K, Spittle AJ, Brown NC, Anderson PJ, Doyle LW. Rates of early intervention services in very preterm children with developmental disabilities at age 2 years. J Paediatr Child Health. 2008; 44(5):276-280.
  • [123]Arpi E, Ferrari F. Preterm birth and behaviour problems in infancy and preschool-age children: a review of the recent literature. Dev Med Child Neurol. 2013. doi:10.1111/dmcn.12142.
  • [124]Solaski M, Majnemer A, Oskoui M. Contribution of socio-economic status on the prevalence of cerebral palsy: a systematic search and review. Dev Med Child Neurol. 2014; 56(11):1043-1051.
  • [125]Brown N, Spittle A. Neurobehavioral evaluation in the preterm and term infant. Curr Pediatr Rev. 2014; 10(1):65-72.
  • [126]Van Hus JW, Jeukens-Visser M, Koldewijn K, Van Sonderen L, Kok JH, Nollet F et al.. Comparing two motor assessment tools to evaluate neurobehavioral intervention effects in infants with very low birth weight at 1 year. Phys Ther. 2013; 93(11):1475-1483.
  • [127]Kidokoro H, Neil JJ, Inder TE. New MR imaging assessment tool to define brain abnormalities in very preterm infants at term. AJNR Am J Neuroradiol. 2013; 34(11):2208-2214.
  • [128]Epstein HT. Stages of increased cerebral blood flow accompany stages of rapid brain growth. Brain Dev. 1999; 21(8):535-539.
  • [129]Shi F, Yap PT, Wu G, Jia H, Gilmore JH, Lin W et al.. Infant brain atlases from neonates to 1- and 2-year-olds. PLoS One. 2011; 6(4):e18746.
  • [130]Gousias IS, Edwards AD, Rutherford MA, Counsell SJ, Hajnal JV, Rueckert D et al.. Magnetic resonance imaging of the newborn brain: manual segmentation of labelled atlases in term-born and preterm infants. Neuroimage. 2012; 62(3):1499-1509.
  • [131]Gousias IS, Hammers A, Counsell SJ, Srinivasan L, Rutherford MA, Heckemann RA et al.. Magnetic resonance imaging of the newborn brain: automatic segmentation of brain images into 50 anatomical regions. PLoS One. 2013; 8(4):e59990.
  • [132]Tournier JD, Calamante F, Connelly A. Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage. 2007; 35(4):1459-1472.
  • [133]Ball G, Counsell SJ, Anjari M, Merchant N, Arichi T, Doria V et al.. An optimised tract-based spatial statistics protocol for neonates: applications to prematurity and chronic lung disease. Neuroimage. 2010; 53(1):94-102.
  • [134]Sustersic B, Sustar K, Paro-Panjan D. General movements of preterm infants in relation to their motor competence between 5 and 6 years. Eur J Paediatr Neurol. 2012; 16(6):724-729.
  • [135]Butcher PR, van Braeckel K, Bouma A, Einspieler C, Stremmelaar EF, Bos AF. The quality of preterm infants’ spontaneous movements: an early indicator of intelligence and behaviour at school age. J Child Psychol Psychiatry. 2009; 50(8):920-930.
  • [136]Kodric J, Sustersic B, Paro-Panjan D. Assessment of general movements and 2.5 year developmental outcomes: pilot results in a diverse preterm group. Eur J Paediatr Neurol. 2010; 14(2):131-137.
  • [137]Hadders-Algra M, Mavinkurve-Groothuis AM, Groen SE, Stremmelaar EF, Martijn A, Butcher PR. Quality of general movements and the development of minor neurological dysfunction at toddler and school age. Clin Rehabil. 2004; 18(3):287-299.
  • [138]Hadders-Algra M, Groothuis AM. Quality of general movements in infancy is related to neurological dysfunction, ADHD, and aggressive behaviour. Dev Med Child Neurol. 1999; 41(6):381-391.
  • [139]Lester BM, Tronick EZ, LaGasse L, Seifer R, Bauer CR, Shankaran S et al.. The maternal lifestyle study: effects of substance exposure during pregnancy on neurodevelopmental outcome in 1-month-old infants. Pediatrics. 2002; 110(6):1182-1192.
  • [140]Lester BM, Tronick EZ, Brazelton TB. The Neonatal Intensive Care Unit Network Neurobehavioral Scale procedures. Pediatrics. 2004; 113(3 Pt 2):641-667.
  • [141]Tronick EZ, Olson K, Rosenberg R, Bohne L, Lu J, Lester BM. Normative neurobehavioral performance of healthy infants on the Neonatal Intensive Care Unit Network Neurobehavioral Scale. Pediatrics. 2004; 113(3 Pt 2):676-678.
  • [142]Fink NS, Tronick E, Olson K, Lester B. Healthy newborns’ neurobehavior: norms and relations to medical and demographic factors. J Pediatr. 2012; 161(6):1073-1079.
  • [143]Lester BM, Tronick EZ, LaGasse L, Seifer R, Bauer CR, Shankaran S et al.. Summary statistics of neonatal intensive care unit network neurobehavioral scale scores from the maternal lifestyle study: a quasinormative sample. Pediatrics. 2004; 113(3 Pt 2):668-675.
  • [144]Brown NC, Doyle LW, Bear MJ, Inder TE. Alterations in neurobehavior at term reflect differing perinatal exposures in very preterm infants. Pediatrics. 2006; 118(6):2461-2471.
  • [145]El-Dib M, Massaro AN, Glass P, Aly H. Neurobehavioral assessment as a predictor of neurodevelopmental outcome in preterm infants. J Perinatol. 2012; 32(4):299-303.
  • [146]Liu J, Bann C, Lester B, Tronick E, Das A, Lagasse L et al.. Neonatal neurobehavior predicts medical and behavioral outcome. Pediatrics. 2010; 125(1):e90-e98.
  • [147]Lester BM, Tronick EZ. History and description of the Neonatal Intensive Care Unit Network Neurobehavioral Scale. Pediatrics. 2004; 113(3 Pt 2):634-640.
  • [148]Dubowitz LM, Dubowitz V, Palmer P, Verghote M. A new approach to the neurological assessment of the preterm and full-term newborn infant. Brain Dev. 1980; 2(1):3-14.
  • [149]Dubowitz L, Mercuri E, Dubowitz V. An optimality score for the neurologic examination of the term newborn. J Pediatr. 1998; 133(3):406-416.
  • [150]Dubowitz LM, Dubowitz V, Mercuri E. Neurological Assessment of the Preterm and Fullterm Newborn Infant. 8th ed. Mac Keith Press, London; 1999.
  • [151]Mercuri E, Guzzetta A, Laroche S, Ricci D, Van Haastert I, Simpson A et al.. Neurologic examination of preterm infants at term age: comparison with term infants. J Pediatr. 2003; 142(6):647-655.
  • [152]Ricci D, Romeo DM, Haataja L, van Haastert IC, Cesarini L, Maunu J et al.. Neurological examination of preterm infants at term equivalent age. Early Hum Dev. 2008; 84(11):751-761.
  • [153]McGready R, Simpson J, Panyavudhikrai S, Loo S, Mercuri E, Haataja L et al.. Neonatal neurological testing in resource-poor settings. Ann Trop Paediatr. 2000; 20(4):323-336.
  • [154]Daily DK, Ellison PH. The premie-neuro: a clinical neurologic examination of premature infants. Neonatal Netw. 2005; 24(1):15-22.
  • [155]Gagnon K, Cannon S, Weatherstone KB. The premie-neuro: opportunities and challenges for standardized neurologic assessment of the preterm infant. Adv Neonatal Care. 2012; 12(5):310-317.
  • [156]Ricci D, Romeo DM, Serrao F, Gallini F, Leone D, Longo M et al.. Early assessment of visual function in preterm infants: how early is early? Early Hum Dev. 2010; 86(1):29-33.
  • [157]Ricci D, Cesarini L, Romeo DM, Gallini F, Serrao F, Groppo M et al.. Visual function at 35 and 40 weeks’ postmenstrual age in low-risk preterm infants. Pediatrics. 2008; 122(6):e1193-e1198.
  • [158]Ricci D, Romeo DM, Gallini F, Groppo M, Cesarini L, Pisoni S et al.. Early visual assessment in preterm infants with and without brain lesions: correlation with visual and neurodevelopmental outcome at 12 months. Early Hum Dev. 2011; 87(3):177-182.
  • [159]Mercuri E, Haataja L, Guzzetta A, Anker S, Cowan F, Rutherford M et al.. Visual function in term infants with hypoxic-ischaemic insults: correlation with neurodevelopment at 2 years of age. Arch Dis Child Fetal Neonatal Ed. 1999; 80(2):F99-F104.
  • [160]Campbell SK, Hedeker D. Validity of the Test of Infant Motor Performance for discriminating among infants with varying risk for poor motor outcome. J Pediatr. 2001; 139(4):546-551.
  • [161]Campbell SK, Kolobe TH, Osten ET, Lenke M, Girolami GL. Construct validity of the test of infant motor performance. Phys Ther. 1995; 75(7):585-596.
  • [162]Campbell SK, Kolobe TH, Wright BD, Linacre JM. Validity of the Test of Infant Motor Performance for prediction of 6-, 9- and 12-month scores on the Alberta Infant Motor Scale. Dev Med Child Neurol. 2002; 44(4):263-272.
  • [163]Kolobe TH, Bulanda M, Susman L. Predicting motor outcome at preschool age for infants tested at 7, 30, 60, and 90 days after term age using the Test of Infant Motor Performance. Phys Ther. 2004; 84(12):1144-1156.
  • [164]Badawi N, Watson L, Petterson B, Blair E, Slee J, Haan E et al.. What constitutes cerebral palsy? Dev Med Child Neurol. 1998; 40(8):520-527.
  • [165]Gainsborough M, Surman G, Maestri G, Colver A, Cans C. Validity and reliability of the guidelines of the surveillance of cerebral palsy in Europe for the classification of cerebral palsy. Dev Med Child Neurol. 2008; 50(11):828-831.
  • [166]Palisano RJ, Hanna SE, Rosenbaum PL, Russell DJ, Walter SD, Wood EP et al.. Validation of a model of gross motor function for children with cerebral palsy. Phys Ther. 2000; 80(10):974-985.
  • [167]Bayley N. Bayley Scales of Infant and Toddler Development–Third Edition. Harcourt Assessment, San Antonio, TX; 2006.
  • [168]Luttikhuizen Dos Santos ES, de Kieviet JF, Konigs M, van Elburg RM, Oosterlaan J. Predictive value of the Bayley Scales of Infant Development on development of very preterm/very low birth weight children: A meta-analysis. Early Hum Dev. 2013; 89(7):487-496.
  • [169]Burns YR, Ensbey RM, Norrie MA. The Neuro-Sensory Motor Developmental Assessment: Part 1. Development and administration of the test. Aust J Physiother. 1989; 35(3):141-149.
  • [170]Burns YR, Ensbey RM, Norrie MA. The Neuro Sensory Motor Developmental Assessment Part II: Predictive and concurrent validity. Aust J Physiother. 1989; 35:151-157.
  • [171]Burns Y, O’Callaghan M, McDonell B, Rogers Y. Movement and motor development in ELBW infants at 1 year is related to cognitive and motor abilities at 4 years. Early Hum Dev. 2004; 80(1):19-29.
  • [172]Danks M, Maideen MF, Burns YR, O’Callaghan MJ, Gray PH, Poulsen L et al.. The long-term predictive validity of early motor development in “apparently normal” ELBW survivors. Early Hum Dev. 2012; 88(8):637-641.
  • [173]Piper MC, Darrah J. Motor assessment of the developing infant. Saunders, Alberta; 1994.
  • [174]Piper MC, Pinnell LE, Darrah J, Maguire T, Byrne PJ. Construction and validation of the Alberta Infant Motor Scale (AIMS). Can J Public Health. 1992; 83 Suppl 2:S46-S50.
  • [175]van Haastert IC, de Vries LS, Helders PJ, Jongmans MJ. Early gross motor development of preterm infants according to the Alberta Infant Motor Scale. J Pediatr. 2006; 149(5):617-622.
  • [176]Blanchard Y, Neilan E, Busanich J, Garavuso L, Klimas D. Interrater reliability of early intervention providers scoring the alberta infant motor scale. Pediatr Phys Ther. 2004; 16(1):13-18.
  • [177]Jeng SF, Yau KI, Chen LC, Hsiao SF. Alberta infant motor scale: reliability and validity when used on preterm infants in Taiwan. Phys Ther. 2000; 80(2):168-178.
  • [178]Darrah J, Piper M, Watt MJ. Assessment of gross motor skills of at-risk infants: predictive validity of the Alberta Infant Motor Scale. Dev Med Child Neurol. 1998; 40(7):485-491.
  文献评价指标  
  下载次数:15次 浏览次数:58次