期刊论文详细信息
BMC Evolutionary Biology
Cophylogenetic relationships between Anicetus parasitoids (Hymenoptera: Encyrtidae) and their scale insect hosts (Hemiptera: Coccidae)
Yan-Zhou Zhang2  San-An Wu3  Yves Desdevises4  Marco Gebiola1  Hai-Bin Li3  Fang Yu2  Jun Deng3 
[1] Department of Entomology, The University of Arizona, 410 Forbes Building, Tucson, AZ 85721, USA;Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China;Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China;CNRS, UMR 7232, Integrative Biology of Marine Organisms, Observatoire Océanologique, F-66650 Banyuls/Mer, France
关键词: 28S-D2;    COI;    Speciation;    Sorting;    Host-parasitoid interactions;   
Others  :  858167
DOI  :  10.1186/1471-2148-13-275
 received in 2013-09-25, accepted in 2013-12-18,  发布年份 2013
PDF
【 摘 要 】

Background

Numerous studies have investigated cospeciation between parasites and their hosts, but there have been few studies concerning parasitoids and insect hosts. The high diversity and host specialization observed in Anicetus species suggest that speciation and adaptive radiation might take place with species diversification in scale insect hosts. Here we examined the evolutionary history of the association between Anicetus species and their scale insect hosts via distance-based and tree-based methods.

Results

A total of 94 Anicetus individuals (nine parasitoid species) and 113 scale insect individuals (seven host species) from 14 provinces in China were collected in the present study. DNA sequence data from a mitochondrial gene (COI) and a nuclear ribosomal gene (28S D2 region) were used to reconstruct the phylogenies of Anicetus species and their hosts. The distance-based analysis showed a significant fit between Anicetus species and their hosts, but tree-based analyses suggested that this significant signal could be observed only when the cost of host-switching was high, indicating the presence of parasite sorting on related host species.

Conclusions

This study, based on extensive rearing of parasitoids and species identification, provides strong evidence for a prevalence of sorting events and high host specificity in the genus Anicetus, offering insights into the diversification process of Anicetus species parasitizing scale insects.

【 授权许可】

   
2013 Deng et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140723094142684.pdf 1025KB PDF download
41KB Image download
56KB Image download
75KB Image download
69KB Image download
73KB Image download
【 图 表 】

【 参考文献 】
  • [1]Kellogg VL: Distribution and species-forming of ecto-parasites. Am Nat 1913, 47:129-158.
  • [2]Brooks DR: Testing the context and extent of host-parasite coevolution. Syst Biol 1979, 28(3):299-307.
  • [3]Brooks DR: Hennig's parasitological method: A proposed solution. Syst Biol 1981, 30(3):229-249.
  • [4]Brooks DR, Glen DR: Pinworms and primates: a case study in coevolution. Proc Helminthol Soc Washington 1982, 49:76-85.
  • [5]Cressey R, Collette B, Russo J: Copepods and scombrid fishes: A study in host-parasite relationships. National Marine Fisheries Service: Fishery bulletin United States; 1983:81.
  • [6]Hafner MS, Nadler SA: Phylogenetic trees support the coevolution of parasites and their hosts. Nature 1988, 332:258-259.
  • [7]Desdevises Y, Morand S, Jousson O, Legendre P: Coevolution between Lamellodiscus (Monogenea: Diplectanidae) and Sparidae (Teleostei): the study of a complex host‒parasite system. Evolution 2002, 56(12):2459-2471.
  • [8]Light JE, Hafner MS: Codivergence in heteromyid rodents (Rodentia: Heteromyidae) and their sucking lice of the genus Fahrenholzia (Phthiraptera: Anoplura). Syst Biol 2008, 57(3):449-465.
  • [9]Page RD: TreeMap 1.0. Division of Environmental and Evolutionary Biology, Institute of Biomedical and Life Sciences. Glasgow, UK: University of Glasgow; 1995.
  • [10]Ronquist F: Reconstructing the history of host‒parasite associations using generalised parsimony. Cladistics 1995, 11(1):73-89.
  • [11]Ronquist F: TreeFitter 1.0. Computer program distributed by the author. Uppsala: Uppsala University; 2000.
  • [12]Legendre P, Desdevises Y, Bazin E: A statistical test for host–parasite coevolution. Syst Biol 2002, 51(2):217-234.
  • [13]Boeger WA, Kritsky DC: Coevolution of the Monogenoidea (Platyhelminthes) based on a revised hypothesis of parasite phylogeny. Int J Parasitol 1997, 27(12):1495-1511.
  • [14]Paterson AM, Palma RL, Gray RD: How frequently do avian lice miss the boat? Implications for coevolutionary studies. Syst Biol 1999, 48(1):214-223.
  • [15]Johnson KP, Clayton DH: Coevolutionary history of ecological replicates: comparing phylogenies of wing and body lice to Columbiform hosts. In Tangled Trees: phylogeny, cospeciation and coevolution. Chicago: University of Chicago press: Page RDM; 2003:262-286.
  • [16]Demastes JW, Hafner MS: Cospeciation of pocket gophers (Geomys) and their chewing lice (Geomydoecus). J Mammal 1993, 74(3):521-530.
  • [17]Hafner MS, Sudman PD, Villablanca FX, Spradling TA, Demastes JW, Nadler SA: Disparate rates of molecular evolution in cospeciating hosts and parasites. Science 1994, 265:1087-1090.
  • [18]Hafner MS, Page RD: Molecular phylogenies and host-parasite cospeciation: gophers and lice as a model system. Phil Trans R Soc Lond Ser B 1995, 349(1327):77-83.
  • [19]Paterson AM, Wallis GP, Wallis LJ, Gray RD: Seabird and louse coevolution: Complex histories revealed by 12S rRNA sequences and reconciliation analyses. Syst Biol 2000, 49(3):383-399.
  • [20]Banks JC, Paterson AM: Multi-host parasite species in cophylogenetic studies. Int J Parasitol 2005, 35(7):741-746.
  • [21]Hughes J, Kennedy M, Johnson KP, Palma RL, Page RD: Multiple cophylogenetic analyses reveal frequent cospeciation between pelecaniform birds and Pectinopygus lice. Syst Biol 2007, 56(2):232-251.
  • [22]Itino T, Davies SJ, Tada H, Hieda Y, Inoguchi M, Itioka T, Yamane S, Inoue T: Cospeciation of ants and plants. Ecol Res 2001, 16(4):787-793.
  • [23]Lopez-Vaamonde C, Rasplus JY, Weiblen GD, Cook JM: Molecular phylogenies of fig wasps: partial cocladogenesis of pollinators and parasites. Mol Phylogenet Evol 2001, 21(1):55-71.
  • [24]Ronquist F, Liljeblad J: Evolution of the gall wasp‒host plant association. Evolution 2001, 55(12):2503-2522.
  • [25]Marussich WA, Machado CA: Host‒specificity and coevolution among pollinating and nonpollinating new world fig wasps. Mol Ecol 2007, 16(9):1925-1946.
  • [26]Holst-Jensen A, Kohn L, Jakobsen K, Schumacher T: Molecular phylogeny and evolution of Monilinia (Sclerotiniaceae) based on coding and noncoding rDNA sequences. Am J Bot 1997, 84(5):686.
  • [27]SImková A, Morand S, Jobet E, Gelnar M, Verneau O: Molecular phylogeny of congeneric monogenean parasites (Dactylogyrus): a case of intrahost speciation. Evolution 2004, 58(5):1001-1018.
  • [28]Huyse T, Volckaert FA: Comparing host and parasite phylogenies: Gyrodactylus flatworms jumping from goby to goby. Syst Biol 2005, 54(5):710-718.
  • [29]Jackson AP, Charleston MA: A cophylogenetic perspective of RNA–virus evolution. Mol Biol Evol 2004, 21(1):45-57.
  • [30]Dimcheff DE, Drovetski SV, Krishnan M, Mindell DP: Cospeciation and horizontal transmission of avian sarcoma and leukosis virus gag genes in galliform birds. J Virol 2000, 74(9):3984-3995.
  • [31]Althoff DM: A test of host-associated differentiation across the ‘parasite continuum’in the tri-trophic interaction among yuccas, bogus yucca moths, and parasitoids. Mol Ecol 2008, 17(17):3917-3927.
  • [32]Lopez-Vaamonde C, Godfray C, West SA, Hansson C, Cook JM: The evolution of host use and unusual reproductive strategies in Achrysocharoides parasitoid wasps. J Evol Biol 2005, 18:1029-1041.
  • [33]Godfray HCJ: Parasitoids: behavioral and evolutionary ecology. Princeton University Press: Princeton; 1994.
  • [34]Noyes J: Universal chalcidoidea database. World Wide Web electronic publication 2013. http://www.nhm.ac.uk/chalcidoids webcite (accessed October 2013)
  • [35]Smith D: Biological control of Ceroplastes rubens Maskell, by the introduced parasitoid Anicetus beneficus Ishii and Yasumatsu. Qld J Agric Anim Sci 1986, 43(2):101-105.
  • [36]Kim H, Moon D, Park J, Lee S, Lippold P, Chang Y: Studies on integrated control of citrus pests. (2) Control of ruby scales (Ceroplastes rubens) on citrus by introduction of a parasitic natural enemy, Anicetus beneficus (Hymenoptera: Encyrtidae). Korean J Plant Protection 1979, 18:107-110.
  • [37]Krull S, Basedow T: Evaluation of the biological control of the pink wax scale Ceroplastes rubens Maskell (Hom., Coccidae) with the introduced parasitoid Anicetus beneficus Ishii & Yasumatsu (Hym., Encyrtidae) in the Central province of Papua New Guinea. J Appl Entomol 2005, 129(6):323-329.
  • [38]Zhang YZ, Si S, Zheng JT, Li HL, Fang Y, Zhu CD, Vogler AP: DNA barcoding of endoparasitoid wasps in the genus Anicetus reveals high levels of host specificity (Hymenoptera: Encyrtidae). Biol Control 2011, 58(3):182-191.
  • [39]Deng J, Yu F, Zhang TX, Hu HY, Zhu CD, Wu SA, Zhang YZ: DNA barcoding of six Ceroplastes species (Hemiptera: Coccoidea: Coccidae) from China. Mol Ecol Resour 2012, 12(5):791-796.
  • [40]Herre EA: Barcoding helps biodiversity fly. Proc Natl Acad Sci USA 2006, 103(11):3949-3950.
  • [41]Bickford D, Lohman DJ, Sodhi NS, Ng PK, Meier R, Winker K, Ingram KK, Das I: Cryptic species as a window on diversity and conservation. Trends Ecol Evol 2007, 22(3):148-155.
  • [42]Smith MA, Wood DM, Janzen DH, Hallwachs W, Hebert PD: DNA barcodes affirm that 16 species of apparently generalist tropical parasitoid flies (Diptera, Tachinidae) are not all generalists. Proc Natl Acad Sci USA 2007, 104(12):4967-4972.
  • [43]Gebiola M, Gómez‒Zurita J, Monti M, Navone P, Bernardo U: Integration of molecular, ecological, morphological and endosymbiont data for species delimitation within the Pnigalio soemius complex (Hymenoptera: Eulophidae). Mol Ecol 2012, 21(5):1190-1208.
  • [44]Askew R, Shaw MR: Parasitoid communities: their size, structure and development. In Insect Parasitoids, 13th Symposium of Royal Entomological Society of London. Edited by Waage J, Greathead D. London: now Elsevier: Academic Press; 1986:225-264.
  • [45]Chong JH, Oetting RD: Specificity of Anagyrus sp. nov. nr. sinope and Leptomastix dactylopii for six mealybug species. BioControl 2007, 52(3):289-308.
  • [46]Noyes J: Copidosoma truncatellum (Dalman) and C. floridanum (Ashmead)(Hymenoptera, Encyrtidae), two frequently misidentified polyembryonic parasitoids of caterpillars (Lepidoptera). Syst Entomol 1988, 13(2):197-204.
  • [47]Zolnerowich G: Systematics of the Copidosomatini: Polyembryonic Parasites (Hymenoptera: Encyrtidae). Texas A & M University: phD thesis; 1995.
  • [48]Gordh G: Biological investigations on Comperia merceti (Compere), an encyrtid parasite of the cockroach Supella longipalpa (Serville). J Entomol. (A) 1973, 47(2):115-123.
  • [49]Willink E, Moore D: Aspects of the biology of Rastrococcus invadens Williams (Hemiptera: Pseudococcidae), a pest of fruit crops in West Africa, and one of its primary parasitoids, Gyranusoidea tebygi Noyes (Hymenoptera: Encyrtidae). Bull Ent Res 1988, 78:709-715.
  • [50]Narasimham A, Chacko M: Rastrococcus spp.(Hemiptera: Pseudococcidae) and their natural enemies in India as potential biocontrol agents for R. invadens Williams. Bull Entomol Res 1988, 78(04):703-708.
  • [51]Chesters D, Wang Y, Yu F, Bai M, Zhang TX, Hu HY, Zhu CD, Zhang YZ: The integrative taxonomic approach reveals host specific species in an encyrtid parasitoid species complex. PLoS ONE 2012, 7(5):e37655.
  • [52]Jiggins FM, von Der Schulenburg JH, Hurst GD, Majerus ME: Recombination confounds interpretations of Wolbachia evolution. Proc Biol Sci 2001, 268:1423-1427.
  • [53]Ronquist F: Phylogenetic approaches in coevolution and biogeography. Zool Scr 1997, 26(4):313-322.
  • [54]Johnson PT, Lunde KB, Thurman EM, Ritchie EG, Wray SN, Sutherland DR, Kapfer JM, Frest TJ, Bowerman J, Blaustein AR: Parasite (Ribeiroia ondatrae) infection linked to amphibian malformations in the western United States. Ecol Monogr 2002, 72(2):151-168.
  • [55]Weckstein JD: Biogeography explains cophylogenetic patterns in toucan chewing lice. Syst Biol 2004, 53(1):154-164.
  • [56]Banks J, Palma R, Paterson A: Cophylogenetic relationships between penguins and their chewing lice. J Evol Biol 2005, 19(1):156-166.
  • [57]Clark MA, Moran NA, Baumann P, Wernegreen JJ: Cospeciation between bacterial endosymbionts (Buchnera) and a recent radiation of aphids (Uroleucon) and pitfalls of testing for phylogenetic congruence. Evolution 2000, 54(2):517-525.
  • [58]Jousselin E, Desdevises Y, Coeur d'Acier A: Fine-scale cospeciation between Brachycaudus and Buchnera aphidicola: bacterial genome helps define species and evolutionary relationships in aphids. Proc R Soc Lond B-Biol Sci 2009, 276(1654):187-196.
  • [59]Xu ZH, He JH: Two new species of the genus Anicetus from China (Hymenoptera: Encyrtidae). Acta Zootaxonomica Sinica 1997, 1:021.
  • [60]Chantos JM, Vinson SB, Helms KR: Distribution and abundance of parasites of the rhodesgrass mealybug, Antonina graminis: reassessment of a classic example of biological control in the southeastern United States. J Insect Sci 2009, 9(48):1-6.
  • [61]Klassen GJ: Coevolution: a history of the macroevolutionary approach to studying host-parasite associations. J Parasitol 1992, 78(4):573-587.
  • [62]Page RD: Tangled trees: Phylogeny, cospeciation, and coevolution. Chicago: University of Chicago Press; 2003.
  • [63]Subba Rao B, Hayat M: The Chalcidoidea (Insecta: Hymenoptera) of India and the adjacent countries. Part II. A catalogue of Chalcidoidea of India and the adjacent countries. Orient Insects 1986, 20:1-430.
  • [64]Yang ZX, Ren YS: Studies on the different kinds of parasitic wasp of Ceroplastes rubens Mask. and C. japaonica Green and their killing effect on the pests. South China Fruits 1999, 28:16-18.
  • [65]Noyes JS, Hayat M: Oriental mealybug parasitoids of the Anagyrini (Hymenoptera: Encyrtidae). Wallingford: Cab International; 1994.
  • [66]Sato H: Parasitoid complexes of lepidopteran leaf miners on oaks (Quercus dentata and Quercus mongolica) in Hokkaido. Japan. Ecol Res 1990, 5(1):1-8.
  • [67]Sheehan W, Hawkins BA: Attack strategy as an indicator of host range in metopiine and pimpline ichneumonidae (hymenoptera). Ecol Entomol 1991, 16(1):129-131.
  • [68]Memmott J, Godfray H, Gauld ID: The structure of a tropical host-parasitoid community. J Anim Ecol 1994, 63:521-540.
  • [69]Smith MA, Rodriguez JJ, Whitfield JB, Deans AR, Janzen DH, Hallwachs W, Hebert PD: Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections. Proc Natl Acad Sci USA 2008, 105(34):12359-12364.
  • [70]Dyer LA, Singer M, Lill J, Stireman J, Gentry G, Marquis RJ, Ricklefs RE, Greeney HF, Wagner DL, Morais H: Host specificity of Lepidoptera in tropical and temperate forests. Nature 2007, 448(7154):696-699.
  • [71]Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994, 22(22):4673-4680.
  • [72]Hall TA: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 1999, 41:95-98.
  • [73]Farris JS, Kallersjo M, Kluge AG, Bult C: Testing significance of incongruence. Cladistics 1995, 10:315-319.
  • [74]Swofford DL: PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sunderland, Massachusetts: Sinauer Associates; 2003.
  • [75]Posada D: jModelTest: phylogenetic model averaging. Mol Biol Evol 2008, 25(7):1253-1256.
  • [76]Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19(12):1572-1574.
  • [77]Rambaut A, Drummond AJ: Tracer v. 1.5. 2009. http://tree.bio.ed.ac.uk/software/tracer/ webcite(accessed 14 October 2012)
  • [78]Charleston MA, Robertson DL: Preferential host switching by primate lentiviruses can account for phylogenetic similarity with the primate phylogeny. Syst Biol 2002, 51:528-535.
  • [79]Conow C, Fielder D, Ovadia Y, Libeskind-Hadas R: Jane: a new tool for the cophylogeny reconstruction problem. Algorithms Mol Biol 2010, 5(1):16. BioMed Central Full Text
  • [80]Meier-Kolthoff JP, Auch AF, Huson DH, Göker M: CopyCat: cophylogenetic analysis tool. Bioinformatics 2007, 23(7):898-900.
  • [81]Page RD: Parallel phylogenies: reconstructing the history of host‒parasite assemblages. Cladistics 1994, 10(2):155-173.
  • [82]Mendlová M, Desdevises Y, Civáňová K, Pariselle A, Šimková A: Monogeneans of West African cichlid fish: evolution and cophylogenetic interactions. PLoS ONE 2012, 7(5):e37268.
  文献评价指标  
  下载次数:26次 浏览次数:25次