期刊论文详细信息
BMC Genetics
Evidence of Bos javanicus x Bos indicus hybridization and major QTLs for birth weight in Indonesian Peranakan Ongole cattle
Muladno Muladno3  Jakaria Jakaria3  José Fernando Garcia4  Tad Stewart Sonstegard1  Yuri Tani Utsunomiya2  Hartati Hartati5 
[1] ARS-USDA - Agricultural Research Service - United States Department of Agriculture, Animal Genomics and Improvement Laboratory, Beltsville 20705, MD, USA;Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Jaboticabal 14884-900, São Paulo, Brazil;Faculty of Animal Science, Bogor Agriculture University, Jln. Agatis kampus IPB Dramaga, Bogor 16680, Indonesia;Faculdade de Medicina Veterinária de Araçatuba, UNESP – Univ Estadual Paulista, Araçatuba 16050-680, São Paulo, Brazil;Beef Cattle Research Station, Indonesian Agency for Agricultural Research and Development, Ministry of Agriculture, Jln. Pahlawan no. 2 Grati, Pasuruan 16784, East Java, Indonesia
关键词: birth weight;    Bos javanicus;    Bos indicus;    Nellore;    Peranakan Ongole;   
Others  :  1218919
DOI  :  10.1186/s12863-015-0229-5
 received in 2015-04-15, accepted in 2015-06-10,  发布年份 2015
PDF
【 摘 要 】

Background

Peranakan Ongole (PO) is a major Indonesian Bos indicus breed that derives from animals imported from India in the late 19 thcentury. Early imports were followed by hybridization with the Bos javanicus subspecies of cattle. Here, we used genomic data to partition the ancestry components of PO cattle and map loci implicated in birth weight.

Results

We found that B. javanicus contributes about 6-7 % to the average breed composition of PO cattle. Only two nearly fixed B. javanicus haplotypes were identified, suggesting that most of the B. javanicus variants are segregating under drift or by the action of balancing selection. The zebu component of the PO genome was estimated to derive from at least two distinct ancestral pools. Additionally, well-known loci underlying body size in other beef cattle breeds, such as the PLAG1 region on chromosome 14, were found to also affect birth weight in PO cattle.

Conclusions

This study is the first attempt to characterize PO at the genome level, and contributes evidence of successful, stabilized B. indicus x B. javanicus hybridization. Additionally, previously described loci implicated in body size in worldwide beef cattle breeds also affect birth weight in PO cattle.

【 授权许可】

   
2015 Hartati et al.

【 预 览 】
附件列表
Files Size Format View
20150714013934100.pdf 1182KB PDF download
Fig. 4. 30KB Image download
Fig. 3. 14KB Image download
Fig. 2. 57KB Image download
Fig. 1. 21KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

【 参考文献 】
  • [1]Kumar P, Freeman AR, Loftus RT, Gaillard C, Fuller DQ, Bradley DG. Admixture analysis of South Asian cattle. Heredity (Edinb). 2003; 91:43-50.
  • [2]Karthickeyan SMK, Kumarasamy P, Sivaselvam SN, Saravanan PT R. Analysis of microsatellite markers in Ongole breed of cattle. Indian J Biotechnol. 2008; 7(January):113-6.
  • [3]Ajmone-Marsan P, Garcia JG, Lenstra JA. On the origin of cattle: how aurochs became cattle and colonized the world. Evol Anthropol Issues, News, Rev. 2010; 19:148-57.
  • [4]Hardjosubroto W. Aplikasi Pemuliabiakan Ternak Di Lapangan. PT. Gramedia Widiasarana, Jakarta, Indonesia; 1994.
  • [5]Astuti M. Potensi dan keragaman sumberdaya genetik sapi Peranakan Ongole (PO). Wartazoa. 2004; 14:30-9.
  • [6]Mohamad K, Olsson M, van Tol HTA, Mikko S, Vlamings BH, Andersson G, et al. On the origin of Indonesian cattle. PLoS One 2009;4:e5490.
  • [7]Porto-Neto LR, Sonstegard TS, Liu GE, Bickhart DM, Da Silva MVB, Machado MA, Utsunomiya YT, Garcia JF, Gondro C, Van Tassell CP. Genomic divergence of zebu and taurine cattle identified through high-density SNP genotyping. BMC Genomics. 2013; 14:876. BioMed Central Full Text
  • [8]Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, Sham PC. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007; 81:559-75.
  • [9]Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009; 19:1655-64.
  • [10]Pickrell JK, Pritchard JK: Inference of Population Splits and Mixtures from Genome-Wide Allele Frequency Data. PLoS Genet 2012, 8:e1002967.
  • [11]Reich D, Thangaraj K, Patterson N, Price AL, Singh L. Reconstructing Indian population history. Nature. 2009; 461:489-94.
  • [12]Bolormaa S, Hayes BJ, Hawken RJ, Zhang Y, Reverter A, Goddard ME. Detection of chromosome segments of zebu and taurine origin and their effect on beef production and growth. J Anim Sci. 2011; 89:2050-60.
  • [13]O’Connell J, Gurdasani D, Delaneau O, Pirastu N, Ulivi S, Cocca M, et al. A general approach for haplotype phasing across the full spectrum of relatedness. PLoS Genet. 2014;10:e1004234.
  • [14]De Los Campos G, Gianola D, Rosa GJM. Reproducing kernel Hilbert spaces regression: a general framework for genetic evaluation. J Anim Sci. 2009; 87:1883-7.
  • [15]VanRaden PM. Efficient methods to compute genomic predictions. J Dairy Sci. 2008; 91:4414-23.
  • [16]Strandén I, Garrick DJ. Technical note: derivation of equivalent computing algorithms for genomic predictions and reliabilities of animal merit. J Dairy Sci. 2009; 92:2971-5.
  • [17]Pérez P, de Los Campos G: Genome-Wide Regression & Prediction with the BGLR Statistical Package. Genetics. 2014;198:483–95.
  • [18]Wang H, Misztal I, Aguilar I, Legarra A, Fernando RL, Vitezica Z, et al. Genome-wide association mapping including phenotypes from relatives without genotypes in a single-step (ssGWAS) for 6-week body weight in broiler chickens. Front Genet 2014, 5:134.
  • [19]Utsunomiya YT, Carmo AS, Neves HHR, Carvalheiro R, Matos MC, Zavarez LB, et al. Genome-wide mapping of loci explaining variance in scrotal circumference in nellore cattle. PLoS One. 2014;9.
  • [20]Genome-wide survey of SNP variation uncovers the genetic structure of cattle breeds. Science (80-). 2009; 324:528-32.
  • [21]Decker JE, McKay SD, Rolf MM, Kim JW, Molina Alcalá A, Sonstegard TS, et al. Worldwide patterns of ancestry, divergence, and admixture in domesticated cattle. PLoS Genet. 2014;10.
  • [22]Decker JE, Pires JC, Conant GC, McKay SD, Heaton MP, Chen K, Cooper A, Vilkki J, Seabury CM, Caetano AR, Johnson GS, Brenneman RA, Hanotte O, Eggert LS, Wiener P, Kim J-J, Kim KS, Sonstegard TS, Van Tassell CP, Neibergs HL, McEwan JC, Brauning R, Coutinho LL, Babar ME, Wilson GA, McClure MC, Rolf MM, Kim J, Schnabel RD, Taylor JF. Resolving the evolution of extant and extinct ruminants with high-throughput phylogenomics. Proc Natl Acad Sci U S A. 2009; 106:18644-9.
  • [23]Nijman IJ, Otsen M, Verkaar ELC, de Ruijter C, Hanekamp E, Ochieng JW, Shamshad S, Rege JEO, Hanotte O, Barwegen MW, Sulawati T, Lenstra JA. Hybridization of banteng (Bos javanicus) and zebu (Bos indicus) revealed by mitochondrial DNA, satellite DNA, AFLP and microsatellites. Heredity (Edinb). 2003; 90:10-6.
  • [24]Utsunomiya YT, Bomba L, Lucente G, Colli L, Negrini R, Lenstra JA, Erhardt G, Garcia JF, Ajmone-Marsan P. Revisiting AFLP fingerprinting for an unbiased assessment of genetic structure and differentiation of taurine and zebu cattle. BMC Genet. 2014; 15:47. BioMed Central Full Text
  • [25]Ropiquet A, Gerbault-Seureau M, Deuve JL, Gilbert C, Pagacova E, Chai N, Rubes J, Hassanin A. Chromosome evolution in the subtribe Bovina (Mammalia, Bovidae): the karyotype of the Cambodian banteng (Bos javanicus birmanicus) suggests that Robertsonian translocations are related to interspecific hybridization. Chromosom Res. 2008; 16:1107-18.
  • [26]do Carmo AS, Utsunomiya YT, Carvalheiro R, Neves HHR, Matos MC, Zavarez LB, Pérez O’Brien AM, Sölkner J, McEwan JC, Cole JB, Van Tassell CP, Schenkel FS, da Silva MVGB, Porto Neto LR, Sonstegard TS, Garcia JF. Genome-wide association study for birth weight in Nellore cattle points to previously described orthologous genes affecting human and bovine height. BMC Genet. 2013; 14:52.
  • [27]Karim L, Takeda H, Lin L, Druet T, Arias JAC, Baurain D, Cambisano N, Davis SR, Farnir F, Grisart B, Harris BL, Keehan MD, Littlejohn MD, Spelman RJ, Georges M, Coppieters W. Variants modulating the expression of a chromosome domain encompassing PLAG1 influence bovine stature. Nat Genet. 2011; 43:405-13.
  • [28]Saatchi M, Schnabel RD, Taylor JF, Garrick DJ. Large-effect pleiotropic or closely linked QTL segregate within and across ten US cattle breeds. BMC Genomics. 2014; 15:442. BioMed Central Full Text
  • [29]Fortes MRS, Kemper K, Sasazaki S, Reverter A, Pryce JE, Barendse W, Bunch R, McCulloch R, Harrison B, Bolormaa S, Zhang YD, Hawken RJ, Goddard ME, Lehnert SA. Evidence for pleiotropism and recent selection in the PLAG1 region in Australian Beef cattle. Anim Genet. 2013; 44:636-47.
  • [30]Bolormaa S, Pryce JE, Reverter A, Zhang Y, Barendse W, Kemper K, et al. A Multi-Trait, Meta-analysis for Detecting Pleiotropic Polymorphisms for Stature, Fatness and Reproduction in Beef Cattle. PLoS Genet. 2014;10:e1004198.
  • [31]Fortes MRS, Reverter A, Kelly M, Mcculloch R, Lehnert SA. Genome-wide association study for inhibin, luteinizing hormone, insulin-like growth factor 1, testicular size and semen traits in bovine species. Andrology. 2013; 1:644-50.
  • [32]Fortes MRS, Lehnert SA, Bolormaa S, Reich C, Fordyce G, Corbet NJ, Whan V, Hawken RJ, Reverter A. Finding genes for economically important traits: Brahman cattle puberty. Anim Prod Sci. 2012; 52:143-50.
  • [33]Voz ML, Agten NS, Van De Ven WJM, Kas K. PLAG1, the main translocation target in pleomorphic adenoma of the salivary glands, is a positive regulator of IGF-II. Cancer Res. 2000; 60:106-13.
  • [34]Höglund JK, Guldbrandtsen B, Lund MS, Sahana G: Analyzes of genome-wide association follow-up study for calving traits in dairy cattle. BMC Genetics 2012;13:71.
  • [35]McClure MC, Morsci NS, Schnabel RD, Kim JW, Yao P, Rolf MM, McKay SD, Gregg SJ, Chapple RH, Northcutt SL, Taylor JF. A genome scan for quantitative trait loci influencing carcass, post-natal growth and reproductive traits in commercial Angus cattle. Anim Genet. 2010; 41:597-607.
  • [36]Kim J, Farnir F, Savell J, Taylor JF. Detection of quantitative trait loci for growth and beef carcass fatness traits in a cross between Bos taurus (Angus) and Bos indicus (Brahman) cattle 1. J Anim Sci. 2003; 81:1933-42.
  • [37]Li K, Li Y, Shelton JM, Richardson JA, Spencer E, Chen ZJ, Wang X, Williams RS. Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis. Cell. 2000; 101:389-99.
  • [38]Bradley EW, Carpio LR, Newton AC, Westendorf JJ: Deletion of the PH-domain and leucine rich repeat protein phosphatase 1 (Phlpp1) increases fibroblast growth factor (Fgf) 18 expression and promotes chondrocyte proliferation. J Biol Chem 2015 [epub ahead of print].
  文献评价指标  
  下载次数:14次 浏览次数:11次