期刊论文详细信息
BMC Medicine
A practical method to target individuals for outbreak detection and control
Cécile Viboud1  Gerardo Chowell1 
[1] Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
关键词: disease transmission.;    influenza;    high school;    class schedule;    collocation ranking;    wireless sensing devices;    contact pattern;    dynamic network;    hotspot;    contact network;   
Others  :  857194
DOI  :  10.1186/1741-7015-11-36
 received in 2013-01-30, accepted in 2013-02-12,  发布年份 2013
PDF
【 摘 要 】

Identification of individuals or subpopulations that contribute the most to disease transmission is key to target surveillance and control efforts. In a recent study in BMC Medicine, Smieszek and Salathé introduced a novel method based on readily available information about spatial proximity in high schools, to help identify individuals at higher risk of infection and those more likely to be infected early in the outbreak. By combining simulation models for influenza transmission with high-resolution data on school contact patterns, the authors showed that their proximity method compares favorably to more sophisticated methods using detailed contact tracing information. The proximity method is simple and promising, but further research is warranted to confront this method against real influenza outbreak data, and to assess the generalizability of the approach to other important transmission units, such as work, households, and transportation systems.

See related research article here http://www.biomedcentral.com/1741-7015/11/35 webcite

【 授权许可】

   
2013 Chowell and Viboud; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140723071821429.pdf 194KB PDF download
【 参考文献 】
  • [1]Anderson RM, May RM: Infectious diseases of humans. Oxford: Oxford University Press; 1991.
  • [2]Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM: Superspreading and the effect of individual variation on disease emergence. Nature 2005, 438:355-359.
  • [3]Chowell G, Nishiura H, Viboud C: Modeling rapidly disseminating infectious disease during mass gatherings. BMC Med 2012, 10:159. BioMed Central Full Text
  • [4]Cauchemez S, Bhattarai A, Marchbanks TL, Fagan RP, Ostroff S, Ferguson NM, Swerdlow D: Role of social networks in shaping disease transmission during a community outbreak of 2009 H1N1 pandemic influenza. Proc Natl Acad Sci USA 2011, 108:2825-2830.
  • [5]Stehle J, Voirin N, Barrat A, Cattuto C, Isella L, Pinton JF, Quaggiotto M, Van den Broeck W, Regis C, Lina B, Vanhems P: High-resolution measurements of face-to-face contact patterns in a primary school. PLoS One 2011, 6:e23176.
  • [6]Salathe M, Kazandjieva M, Lee JW, Levis P, Feldman MW, Jones JH: A high-resolution human contact network for infectious disease transmission. Proc Natl Acad Sci USA 107:22020-22025.
  • [7]Stehlé J, Voirin N, Barrat A, Cattuto C, Colizza V, Isella L, Régis C, Pinton JF, Khanafer N, Van den Broeck W, Vanhems P: Simulation of an SEIR infectious disease model on the dynamic contact network of conference attendees. BMC Med 2011, 9:87. BioMed Central Full Text
  • [8]Isella L, Romano M, Barrat A, Cattuto C, Colizza V, Van den Broeck W, Gesualdo F, Pandolfi E, Ravà L, Rizzo C, Tozzi AE: Close encounters in a pediatric ward: measuring face-to-face proximity and mixing patterns with wearable sensors. PLoS One 2011, 6:e17144.
  • [9]Cattuto C, Van den Broeck W, Barrat A, Colizza V, Pinton JF, Vespignani A: Dynamics of person-to-person interactions from distributed RFID sensor networks. PLoS One 2010, 5:e11596.
  • [10]Blower S, Go MH: The importance of including dynamic social networks when modeling epidemics of airborne infections: does increasing complexity increase accuracy? BMC Med 2011, 9:88. BioMed Central Full Text
  • [11]Smieszek T, Salathé M: A low-cost method to assess the epidemiological importance of individuals in controlling infectious disease outbreaks. BMC Med 2013.
  • [12]Cauchemez S, Ferguson NM, Wachtel C, Tegnell A, Saour G, Duncan B, Nicoll A: Closure of schools during an influenza pandemic. Lancet Infect Dis 2009, 9:473-481.
  • [13]Ferguson NM, Cummings DA, Cauchemez S, Fraser C, Riley S, Meeyai A, Iamsirithaworn S, Burke DS: Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature 2005, 437:209-214.
  • [14]Cauchemez S, Valleron AJ, Boelle PY, Flahault A, Ferguson NM: Estimating the impact of school closure on influenza transmission from Sentinel data. Nature 2008, 452:750-754.
  • [15]Steel J, Staeheli P, Mubareka S, Garcia-Sastre A, Palese P, Lowen AC: Transmission of pandemic H1N1 influenza virus and impact of prior exposure to seasonal strains or interferon treatment. J Virol 2011, 84:21-26.
  • [16]Shaman J, Pitzer VE, Viboud C, Grenfell BT, Lipsitch M: Absolute humidity and the seasonal onset of influenza in the continental United States. PLoS Biol 2010, 8:e1000316.
  • [17]Fabian P, McDevitt JJ, DeHaan WH, Fung RO, Cowling BJ, Chan KH, Leung GM, Milton DK: Influenza virus in human exhaled breath: an observational study. PLoS One 2008, 3:e2691.
  • [18]Brownstein JS, Freifeld CC, Chan EH, Keller M, Sonricker AL, Mekaru SR, Buckeridge DL: Information technology and global surveillance of cases of 2009 H1N1 influenza. N Engl J Med 2010, 362:1731-1735.
  文献评价指标  
  下载次数:21次 浏览次数:30次