期刊论文详细信息
BMC Nephrology
Quantification of excretory renal function and urinary protein excretion by determination of body cell mass using bioimpedance analysis
Patrice M. Ambühl2  Albin Schwarz2  Johannes Trachsler2  Stefan Flury1 
[1] Current address: Imperial College Renal and Transplant Centre, Hammersmith Hospital, Du Cane Road, London W12 0HS, UK;Division of Nephrology, Stadtspital Waid, Tièchestrasse 99, Zürich, 8037, Switzerland
关键词: h urine collection;    24 ;    Glomerular filtration rate;    Creatinine clearance;    Body cell mass;    Bioimpedance analysis;   
Others  :  1231142
DOI  :  10.1186/s12882-015-0171-9
 received in 2015-04-19, accepted in 2015-10-19,  发布年份 2015
PDF
【 摘 要 】

Background

Creatinine clearance (CrCl) based on 24 h urine collection is an established method to determine glomerular filtration rate (GFR). However, its measurement is cumbersome and the results are frequently inaccurate. The aim of this study was to develop an alternative method to predict CrCl and urinary protein excretion based on plasma creatinine and the quantification of muscle mass through bioimpedance analysis (BIA).

Methods

In 91 individuals with normal and impaired renal function CrCl was measured from 24 h urine excretion and plasma creatinine concentration. A model to predict 24 h-creatininuria was developed from various measurements assessing muscle mass such as body cell mass (BCM) and fat free mass (FFM) obtained by BIA, skinfold caliper and other techniques (training group, N = 60). Multivariate regression analysis was performed to predict 24 h-creatininuria and to calculate CrCl. A validation group (N = 31) served to compare predicted and measured CrCl.

Results

Overall (accuracy, bias, precision, correlation) the new BIA based prediction model performed substantially better compared with measured CrCl (P 15  = 87 %, bias = 0, IQR of differences = 7.9 mL/min/1.73 m 2 , R = 0.972) versus established estimation formulas such as the 4vMDRD (P 15  = 26 %, bias = -8.3 mL/min/1.73 m 2 , IQR = 13.7 mL/min/1.73 m 2 , R = 0.935), CKD-EPI (P 15  = 29 %, bias = -7.0 mL/min/1.73 m 2 , IQR = 12.1 mL/min/1.73 m 2 , R = 0.932, Cockcroft-Gault equations (P 15  = 55 %, bias = -4.4 mL/min/1.73 m 2 , IQR = 9.0 mL/min/1.73 m 2 , R = 0.920). The superiority of the new method over established prediction formulas was most obvious in a subgroup of individuals with BMI > 30 kg/m 2and in a subgroup with CrCl > 60 mL/min/1.73 m 2 . Moreover, 24 h urinary protein excretion could be estimated accurately by normalization with 24 h-creatininuria derived from BIA based BCM.

Conclusion

Prediction of CrCl based on estimated urinary creatinine excretion determined from measurement of BCM by BIA technique is both accurate and convenient to quantify renal function in normal and diseased states. This new method may become particularly helpful for the evaluation of patients with borderline renal insufficiency and/or with abnormal body composition.

【 授权许可】

   
2015 Flury et al.

【 预 览 】
附件列表
Files Size Format View
20151109043028859.pdf 1708KB PDF download
Fig. 3. 37KB Image download
Fig. 2. 52KB Image download
Fig. 1. 40KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

【 参考文献 】
  • [1]K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002; 39(2 Suppl 1):S1-266.
  • [2]Stevens PE, Levin A. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med. 2013; 158(11):825-30.
  • [3]Michels WM, Grootendorst DC, Verduijn M, Elliott EG, Dekker FW, Krediet RT. Performance of the ccroft-Gault, MDRD, and new CKD-EPI formulas in relation to GFR, age, and body size. Clin J Am Soc Nephrol. 2010; 5(6):1003-9.
  • [4]Gault MH, Longerich LL, Harnett JD, Wesolowski C. Predicting glomerular function from adjusted serum creatinine. Nephron. 1992; 62(3):249-56.
  • [5]Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976; 16(1):31-41.
  • [6]Stevens LA, Coresh J, Feldman HI, Greene T, Lash JP, Nelson RG et al.. Evaluation of the modification of diet in renal disease study equation in a large diverse population. J Am Soc Nephrol. 2007; 18(10):2749-57.
  • [7]Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S et al.. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med. 2006; 145(4):247-54.
  • [8]Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, Feldman HI et al.. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009; 150(9):604-12.
  • [9]Verhave JC, Fesler P, Ribstein J, du Cailar G, Mimran A. Estimation of renal function in subjects with normal serum creatinine levels: influence of age and body mass index. Am J Kidney Dis. 2005; 46(2):233-41.
  • [10]Mahajan S, Mukhiya GK, Singh R, Tiwari SC, Kalra V, Bhowmik DM et al.. Assessing glomerular filtration rate in healthy Indian adults: a comparison of various prediction equations. J Nephrol. 2005; 18(3):257-61.
  • [11]Al-Khader AA, Tamim H, Sulaiman MH, Jondeby MS, Taher S, Hejaili FF et al.. What is the most appropriate formula to use in estimating glomerular filtration rate in adult Arabs without kidney disease? Ren Fail. 2008; 30(2):205-8.
  • [12]Teo BW, Xu H, Wang D, Li J, Sinha AK, Shuter B et al.. GFR estimating equations in a multiethnic Asian population. Am J Kidney Dis. 2011; 58(1):56-63.
  • [13]Peralta CA, Lin F, Shlipak MG, Siscovick D, Lewis C, Jacobs DR et al.. Race differences in prevalence of chronic kidney disease among young adults using creatinine-based glomerular filtration rate-estimating equations. Nephrol Dial Transplant. 2010; 25(12):3934-9.
  • [14]Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K et al.. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009; 53(6):982-92.
  • [15]Lin J. A Comparison of Prediction Equations for Estimating Glomerular Filtration Rate in Adults without Kidney Disease. J Am Soc Nephrol. 2003; 14(10):2573-80.
  • [16]Stevens LA, Schmid CH, Greene T, Zhang YL, Beck GJ, Froissart M et al.. Comparative performance of the CKD Epidemiology Collaboration (CKD-EPI) and the Modification of Diet in Renal Disease (MDRD) Study equations for estimating GFR levels above 60 mL/min/1.73 m 2. Am J Kidney Dis. 2010; 56(3):486-95.
  • [17]Janssen I, Heymsfield SB, Baumgartner RN, Ross R. Estimation of skeletal muscle mass by bioelectrical impedance analysis. J Appl Physiol (Bethesda, Md: 1985). 2000;89(2):465–71.
  • [18]Roubenoff R. Applications of bioelectrical impedance analysis for body composition to epidemiologic studies. Am J Clin Nutr. 1996; 64(3 Suppl):459S-62.
  • [19]Durnin JV, Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. The British journal of nutrition. 1974; 32(1):77-97.
  • [20]Kamimura MA, Avesani CM, Cendoroglo M, Canziani MEF, Draibe SA, Cuppari L. Comparison of skinfold thicknesses and bioelectrical impedance analysis with dual-energy X-ray absorptiometry for the assessment of body fat in patients on long-term haemodialysis therapy. Nephrol Dial Transplant. 2003; 18(1):101-5.
  • [21]Donadio C, Consani C, Ardini M, Caprio F, Grassi G, Lucchesi A. Prediction of glomerular filtration rate from body cell mass and plasma creatinine. Current drug discovery technologies. 2004; 1(3):221-8.
  • [22]Donadio C, Lucchesi A, Tramonti G, Bianchi C. Creatinine clearance predicted from body cell mass is a good indicator of renal function. Kidney Int Suppl. 1997; 63:S166-8.
  • [23]Donadio C, Lucchesi A, Tramonti G, Bianchi C. Creatinine clearance can be predicted from plasma creatinine and body composition analysis by means of electrical bioimpedance. Ren Fail. 1998; 20(2):285-93.
  • [24]Bishop CW, Bowen PE, Ritchey SJ. Norms for nutritional assessment of American adults by upper arm anthropometry. Am J Clin Nutr. 1981; 34(11):2530-9.
  • [25]Frisancho AR. New norms of upper limb fat and muscle areas for assessment of nutritional status. The American journal of clinical nutrition. 1981; 34(11):2540-5.
  • [26]Piccoli A, Rossi B, Pillon L, Bucciante G. A new method for monitoring body fluid variation by bioimpedance analysis: the RXc graph. Kidney Int. 1994; 46(2):534-9.
  • [27]Talluri T, Lietdke RJ, Evangelisti A, Talluri J, Maggia G. Fat-free mass qualitative assessment with bioelectric impedance analysis (BIA). Ann N Y Acad Sci. 1999; 873:94-8.
  • [28]Talluri T. BIA 101 - New Edition. Instruction Manual. AKERN. 2010
  • [29]Krouwer JS. Why Bland-Altman plots should use X, not (Y + X)/2 when X is a reference method. Stat Med. 2008; 27(5):778-80.
  • [30]Cooper BA, Aslani A, Ryan M, Zhu FY, Ibels LS, Allen BJ et al.. Comparing different methods of assessing body composition in end-stage renal failure. Kidney Int. 2000; 58(1):408-16.
  • [31]Donadio C, Halim AB, Caprio F, Grassi G, Khedr B, Mazzantini M. Single- and multi-frequency bioelectrical impedance analyses to analyse body composition in maintenance haemodialysis patients: comparison with dual-energy x-ray absorptiometry. Physiol Meas. 2008; 29(6):S517-24.
  • [32]Donadio C, Consani C, Ardini M, Bernabini G, Caprio F, Grassi G et al.. Estimate of body water compartments and of body composition in maintenance hemodialysis patients: comparison of single and multifrequency bioimpedance analysis. J Ren Nutr. 2005; 15(3):332-44.
  • [33]Silva MI, Vale BS, Lemos CC, Torres MR, Bregman R. Body adiposity index assess body fat with high accuracy in nondialyzed chronic kidney disease patients. Obesity (Silver Spring, Md). 2013; 21(3):546-52.
  • [34]Nair S, Mishra V, Hayden K, Lisboa PJ, Pandya B, Vinjamuri S et al.. The four-variable modification of diet in renal disease formula underestimates glomerular filtration rate in obese type 2 diabetic individuals with chronic kidney disease. Diabetologia. 2011; 54(6):1304-7.
  • [35]Praditpornsilpa K, Townamchai N, Chaiwatanarat T, Tiranathanagul K, Katawatin P, Susantitaphong P et al.. The need for robust validation for MDRD-based glomerular filtration rate estimation in various CKD populations. Nephrol Dial Transplant. 2011; 26(9):2780-5.
  • [36]Kallner A, Estimated GFR. Comparison of five algorithms:implications for drug dosing. J Clin Pathol. 2014; 67(7):609-13.
  • [37]Inker LA, Schmid CH, Tighiouart H, Eckfeldt JH, Feldman HI, Greene T, et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med. 2012;367(1):20–9. doi:10.1056/NEJMoa1114248.
  文献评价指标  
  下载次数:63次 浏览次数:24次