期刊论文详细信息
BMC Structural Biology
Molecular dynamics simulations of the Nip7 proteins from the marine deep- and shallow-water Pyrococcus species
Dmitry A Afonnikov5  Nikolay A Kolchanov2  Elena V Boldyreva4  Yuri N Vorobjev3  Nikolay A Alemasov1  Kirill E Medvedev1 
[1] Institute of Cytology and Genetics SB RAS, Prospekt Lavrentyeva 10, Novosibirsk 630090, Russia;NRC Kurchatov Institute, 1, Akademika Kurchatova pl., Moscow 123182, Russia;Institute of Chemical Biology and Fundamental Medicine SB RAS, Prospekt Lavrentyeva 8, Novosibirsk 630090, Russia;Institute of Solid Chemistry and Mechanochemistry, SB RAS, Novosibirsk 630090, Russia;Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia
关键词: Salt bridges;    Adaptation;    High pressure;    Nip7 protein;    Molecular dynamics simulation;   
Others  :  1090719
DOI  :  10.1186/s12900-014-0023-z
 received in 2014-07-06, accepted in 2014-10-03,  发布年份 2014
PDF
【 摘 要 】

Background

The identification of the mechanisms of adaptation of protein structures to extreme environmental conditions is a challenging task of structural biology. We performed molecular dynamics (MD) simulations of the Nip7 protein involved in RNA processing from the shallow-water (P. furiosus) and the deep-water (P. abyssi) marine hyperthermophylic archaea at different temperatures (300 and 373 K) and pressures (0.1, 50 and 100 MPa). The aim was to disclose similarities and differences between the deep- and shallow-sea protein models at different temperatures and pressures.

Results

The current results demonstrate that the 3D models of the two proteins at all the examined values of pressures and temperatures are compact, stable and similar to the known crystal structure of the P. abyssi Nip7. The structural deviations and fluctuations in the polypeptide chain during the MD simulations were the most pronounced in the loop regions, their magnitude being larger for the C-terminal domain in both proteins. A number of highly mobile segments the protein globule presumably involved in protein-protein interactions were identified. Regions of the polypeptide chain with significant difference in conformational dynamics between the deep- and shallow-water proteins were identified.

Conclusions

The results of our analysis demonstrated that in the examined ranges of temperatures and pressures, increase in temperature has a stronger effect on change in the dynamic properties of the protein globule than the increase in pressure. The conformational changes of both the deep- and shallow-sea protein models under increasing temperature and pressure are non-uniform. Our current results indicate that amino acid substitutions between shallow- and deep-water proteins only slightly affect overall stability of two proteins. Rather, they may affect the interactions of the Nip7 protein with its protein or RNA partners.

【 授权许可】

   
2014 Medvedev et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128162849966.pdf 1975KB PDF download
Figure 10. 102KB Image download
Figure 9. 39KB Image download
Figure 8. 36KB Image download
Figure 7. 77KB Image download
Figure 6. 102KB Image download
Figure 5. 70KB Image download
Figure 4. 70KB Image download
Figure 3. 40KB Image download
Figure 2. 158KB Image download
Figure 1. 118KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

【 参考文献 】
  • [1]Rothschild LJ, Mancinelli RL: Life in extreme environments. Nature 2001, 409(6823):1092-1101.
  • [2]Daniel I, Oger P, Winter R: Origins of life and biochemistry under high-pressure conditions. Chem Society Rev 2006, 35(10):858-875.
  • [3]Brooks AN, Turkarslan S, Beer KD, Yin Lo F, Baliga NS: Adaptation of cells to new environments. Wiley Interdiscip Rev Syst Biol Med 2011, 3(5):544-561.
  • [4]Sterner R, Liebl W: Thermophilic adaptation of protein. Crit Rev Biochem Mol Biol 2001, 36:39-106.
  • [5]Makarova KS, Wolf YI, Koonin EV: Potential genomic determinants of hyperthermophily. Trends Genet 2003, 19(4):172-176.
  • [6]Berezovsky IN, Shakhnovich EI: Physics and evolution of thermophilic adaptation. Proc Natl Acad Sci U S A 2005, 102(36):12742-12747.
  • [7]McDonald JH: Temperature adaptation at homologous sites in proteins from nine thermophile–mesophile species pairs. Genome Biol Evol 2010, 2:267.
  • [8]Jollivet D, Mary J, Gagniere N, Tanguy A, Fontanillas E, Boutet I, Hourdez S, Segurens B, Weissenbach J, Poch O, Lecompte O: Proteome adaptation to high temperatures in the ectothermic hydrothermal vent Pompeii worm. PLoS One 2012, 7(2):e31150.
  • [9]Di Giulio M: A comparison of proteins from Pyrococcus furiosus and Pyrococcus abyssi: barophily in the physicochemical properties of amino acids and in the genetic code. Gene 2005, 346:1-6.
  • [10]Simonato F, Campanaro S, Lauro FM, Vezzi A, D’Angelo M, Vitulo N, Bartlett DH: Piezophilic adaptation: a genomic point of view. J Biotechnol 2006, 126(1):11-25.
  • [11]Campanaro S, Treu L, Valle G: Protein evolution in deep sea bacteria: an analysis of amino acids substitution rates. BMC Evol Biol 2008, 8(1):313. BioMed Central Full Text
  • [12]Oger PM, Jebbar M: The many ways of coping with pressure. Res Microbiol 2010, 161(10):799-809.
  • [13]Podar M, Reysenbach AL: New opportunities revealed by biotechnological explorations of extremophiles. Curr Opin Biotechnol 2006, 17(3):250-255.
  • [14]Frock AD, Kelly RM: Extreme thermophiles: moving beyond single-enzyme biocatalysis. Curr Opin Chem Eng 2012, 1(4):363-372.
  • [15]Liszka MJ, Clark ME, Schneider E, Clark DS: Nature versus nurture: developing enzymes that function under extreme conditions. Annu Rev Chem Biomol Eng 2012, 3:77-102.
  • [16]Singh OV: Extremophiles: Sustainable Resources and Biotechnological Implications. Wiley-Verlag, New York; 2012.
  • [17]Fiala G, Stetter KO: Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C. Arch Microbiol 1986, 145:56-61.
  • [18]Erauso G, Reysenbach A-L, Godfroy A, Meunier J-R, Crump B, Partensky F, Baross JA, Marteinsson V, Barbier G, Pace NR, Prieur D: Pyrococcus abyssi sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Arch Microbiol 1993, 160:338-349.
  • [19]González JM, Masuchi Y, Robb FT, Ammerman JW, Maeder DL, Yanagibayashi M, Tamaoka J, Kato C: Pyrococcus horikoshii sp. nov., a hyperthermophilic archaeon isolated from a hydrothermal vent at the Okinawa Trough. Extremophiles 1998, 2:123-130.
  • [20]Zanchin NIT, Goldfarb DS: Nip7p interacts with Nop8p, an essential nucleolar protein required for 60S ribosome biogenesis, and the exosome subunit Rrp43p. Mol Cell Biol 1999, 19:1518-1525.
  • [21]Bassler J, Grandi P, Gadal O, Lessmann T, Petfalski E, Tollervey D, Lechner J, Hurt E: Identification of a 60S preribosomal particle that is closely linked to nuclear export. Mol Cell Biol 2001, 8:517-529.
  • [22]Luz JS, Ramos CR, Santos MC, Coltri PP, Palhano FL, Foguel D, Oliveira CC: Identification of archaeal proteins that affect the exosome function in vitro. BMC Biochem 2010, 11(1):22. BioMed Central Full Text
  • [23]Coltri PP, Guimaraez BG, Granato DC, Luz JS, Teixeira EC, Oliveira CC, Zanchin NIT: Structural insights into the interaction of the Nip7 PUA domain with polyuridine RNA. Biochemistry 2007, 46:14177-14187.
  • [24]Pérez‐Arellano I, Gallego J, Cervera J: The PUA domain− a structural and functional overview. FEBS J 2007, 274(19):4972-4984.
  • [25]Aravind L, Koonin E: Novel predicted RNA-binding domains associated with the translation machinery. J Mol Evol 1999, 48:291-302.
  • [26]Hallberg BM, Ericsson UB, Johnson KA, Andersen NM, Douthwaite S, Nordlund P, Beuscher AE, Erlandsen H: The structure of the RNA m5C methyltransferase YebU from Escherichia coli reveals a C-terminal RNArecruiting PUA domain. J Mol Biol 2006, 360:774-787.
  • [27]Gunbin KV, Afonnikov DA, Kolchanov NA: Molecular evolution of the hyperthermophilic archaea of the Pyrococcus genus: analysis of adaptation to different environmental conditions. BMC Genomics 2009, 10(1):639. BioMed Central Full Text
  • [28]Barlow DJ, Thornton JM: Ion-pairs in proteins. J Mol Biol 1983, 168(4):867-885.
  • [29]Merkley ED, Daggett V, Parson WW: A temperature-dependent conformational change of NADH oxidase from Thermus thermophilus HB8. Proteins 2012, 80(2):546-555.
  • [30]Polyansky AA, Kosinsky YA, Efremov RG: Correlation of local changes in the temperature-dependent conformational flexibility of thioredoxins with their thermostability. Russ J Bioorg Chem 2004, 30:421-430.
  • [31]Martinez R, Schwaneberg U, Roccatano D: Temperature effects on structure and dynamics of the psychrophilic protease subtilisin S41 and its thermostable mutants in solution. Protein Eng Des Sel 2011, 24(7):533-544.
  • [32]Lee KJ: Molecular dynamics simulations of a hyperthermophilic and a mesophilic protein L30e. J Chem Inf Model 2011, 52(1):7-15.
  • [33]Priyakumar UD, Ramakrishna S, Nagarjuna KR, Reddy SK: Structural and energetic determinants of thermal stability and hierarchical unfolding pathways of hyperthermophilic proteins, Sac7d and Sso7d. J Phys Chem B 2010, 114(4):1707-1718.
  • [34]Tiberti M, Papaleo E: Dynamic properties of extremophilic subtilisin-like serine-proteases. J Struct Biol 2011, 174(1):69-83.
  • [35]Calandrini V, Kneller GR: Influence of pressure on the slow and fast fractional relaxation dynamics in lysozyme: a simulation study. J Chem Phys 2008, 128:065102.
  • [36]Capece L, Marti MA, Bidon‐Chanal A, Nadra A, Luque FJ, Estrin DA: High pressure reveals structural determinants for globin hexacoordination: neuroglobin and myoglobin cases. Proteins 2009, 75(4):885-894.
  • [37]McCarthy AN, Grigera JR: Effect of pressure on the conformation of proteins. A molecular dynamics simulation of lysozyme. J Mol Graph Model 2006, 24(4):254-261.
  • [38]Laurent AD, Mironov VA, Chapagain PP, Nemukhin AV, Krylov AI: Exploring structural and optical properties of fluorescent proteins by squeezing: modeling high-pressure effects on the mStrawberry and mCherry red fluorescent proteins. J Phys Chem B 2012, 116(41):12426-12440.
  • [39]Sun MM, Tolliday N, Vertiani C, Robb FT, Clark DS: Pressure-induced thermostabilization of glutamate dehydrogenase from the hyperthermophile Pyrococcus furiosus. Protein Sci 1999, 8(5):1056-1063.
  • [40]Sun MM, Caillot R, Mark G, Robb FT, Clark DS: Mechanism of pressure-induced thermostabilization of proteins: studies of glutamate dehydrogenases from the hyperthermophile Thermococcus litoralis. Protein Sci 2001, 10(9):1750-1757.
  • [41]Kalodimos CG, Biris N, Bonvin AMJJ, Levandoski MM, Guennuegues M, Boelens R, Kaptein R: Structure and flexibility adaptation in nonspecific and specific protein-DNA complexes. Science 2004, 305(5682):386-389.
  • [42]Brown C, Campos-León K, Strickland M, Williams C, Fairweather V, Brady RL, Cramp MP, Gaston K: Protein flexibility directs DNA recognition by the papillomavirus E2 proteins. Nucleic Acids Res 2011, 39(7):2969-2980.
  • [43]Boehr DD: Promiscuity in protein‐RNA interactions: conformational ensembles facilitate molecular recognition in the spliceosome. Bioessays 2012, 34(3):174-180.
  • [44]Lam SY, Yeung RC, Yu TH, Sze KH, Wong KB: A rigidifying salt-bridge favors the activity of thermophilic enzyme at high temperatures at the expense of low-temperature activity. PLoS Biol 2011, 9(3):e1001027.
  • [45]Fong JH, Shoemaker BA, Garbuzynskiy SO, Lobanov MY, Galzitskaya OV, Panchenko AR: Intrinsic disorder in protein interactions: insights from a comprehensive structural analysis. PLoS Comput Biol 2009, 5(3):e1000316.
  • [46]Uversky VN, Dunker AK: The case for intrinsically disordered proteins playing contributory roles in molecular recognition without a stable 3D structure. F1000 Biol Rep 2013, 5:1.
  • [47]Janin J, Sternberg MJ: Protein flexibility, not disorder, is intrinsic to molecular recognition. F1000 Biol Rep 2013, 5:2.
  • [48]Boehr DD, Nussinov R, Wright PE: The role of dynamic conformational ensembles in biomolecular recognition. Nat Chem Biol 2009, 5(11):789-796.
  • [49]Jones S, Thornton JM: Principles of protein-protein interactions. Proc Natl Acad Sci U S A 1996, 93(1):13-20.
  • [50]Ferrara CG, Ghara O, Grigera JR: Aggregation of nonpolar solutes in water at different pressures and temperatures: the role of hydrophobic interaction. J Chem Phys 2012, 137(13):135104.
  • [51]Afonnikov DA, Medvedev KE, Gunbin KV, Kolchanov NA: Important role of hydrophobic interactions in high-pressure adaptation of proteins. Dokl Biochem and Biophys 2011, 438(1):113-116.
  • [52]Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The protein data bank. Nucleic Acids Res 2000, 28:235-242.
  • [53]Pieper U, Eswar N, Davis FP, Braberg H, Madhusudhan MS, Rossi A, Marti-Renom M, Karchin R, Webb BM, Eramian D, Shen MY, Kelly L, Melo F, Sali A: ModBase, a database of annotated comparative protein structure models, and associated resources. Nucleic Acids Res 2006, 34:D291-D295.
  • [54]Hess B, Kutzner C, Van Der Spoel D, Lindahl E: GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 2008, 4(3):435-447.
  • [55]Hess B, Bekker H, Berendsen HJC, Fraaije JGEM: LINCS: a linear constraint solver for molecular simulations. J Comp Chem 1997, 18(12):1463-1472.
  • [56]Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE: Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 2010, 78(8):1950-1958.
  • [57]Parrinello M, Rahman A: Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 1981, 52(12):7182-7190.
  • [58]Bussi G, Donadio D, Parrinello M: Canonical sampling through velocity rescaling. J Chem Phys 2006, 126(1):014101-014107.
  • [59]Kabsch W, Sander C: Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983, 22(12):2577-2637.
  • [60]Garcia-Boronat M, Diez-Rivero CM, Reinherz EL, Reche PA: PVS: a web server for protein sequence variability analysis tuned to facilitate conserved epitope discovery. Nucleic Acids Res 2008, 36:W35-W41.
  • [61]Kendall MG, Stuart A: The Advanced Theory of Statistics. Volume 3. Charles Griffin & Co, London; 1968.
  • [62]Porollo A, Meller J: Prediction-based fingerprints of protein-protein interactions. Proteins 2007, 66:630-645.
  文献评价指标  
  下载次数:18次 浏览次数:6次