期刊论文详细信息
BMC Genomics
Genome diversification within a clonal population of pandemic Vibrio parahaemolyticus seems to depend on the life circumstances of each individual bacteria
Romilio T Espejo3  Jaime Martínez-Urtaza1  Natalia Valdes2  Diego Díaz2  Claudia Mella2  Katherine García3  Paulina Uribe3  Cristell Navarro2  David E Loyola2 
[1]Depatment of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, North East Somerset, UK
[2]Centro Nacional de Genómica y Bioinformática, Av B. O’Higgins 340, Santiago, Chile
[3]Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, El Líbano 5524, Santiago, Chile
关键词: Single nucleotide variants;    Horizontal gene transfer;    Genome innovation;    Evolution;    Vibrio parahaemolyticus;   
Others  :  1137324
DOI  :  10.1186/s12864-015-1385-8
 received in 2014-07-02, accepted in 2015-02-24,  发布年份 2015
PDF
【 摘 要 】

Background

New strains of Vibrio parahaemolyticus that cause diarrhea in humans by seafood ingestion periodically emerge through continuous evolution in the ocean. Influx and expansion in the Southern Chilean ocean of a highly clonal V. parahaemolyticus (serotype O3:K6) population from South East Asia caused one of the largest seafood-related diarrhea outbreaks in the world. Here, genomics analyses of isolates from this rapidly expanding clonal population offered an opportunity to observe the molecular evolutionary changes often obscured in more diverse populations.

Results

Whole genome sequence comparison of eight independent isolates of this population from mussels or clinical cases (from different years) was performed. Differences of 1366 to 217,729 bp genome length and 13 to 164 bp single nucleotide variants (SNVs) were found. Most genomic differences corresponded to the presence of regions unique to only one or two isolates, and were probably acquired by horizontal gene transfer (HGT). Some DNA gain was chromosomal but most was in plasmids. One isolate had a large region (8,644 bp) missing, which was probably caused by excision of a prophage. Genome innovation by the presence of unique DNA, attributable to HGT from related bacteria, varied greatly among the isolates, with values of 1,366 (ten times the number of highest number of SNVs) to 217,729 (a thousand times more than the number of highest number of SNVs).

Conclusions

The evolutionary forces (SNVs, HGT) acting on each isolate of the same population were found to differ to an extent that probably depended on the ecological scenario and life circumstances of each bacterium.

【 授权许可】

   
2015 Loyola et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150316033954560.pdf 479KB PDF download
Figure 1. 11KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Alam MJ, Tomochika K, Miyoshi S, Shinoda S: Analysis of seawaters for the recovery of culturable Vibrio parahaemolyticus and some other vibrios. Microbiol Immunol 2001, 45:393-397.
  • [2]Matsumoto C, Okuda J, Ishibashi M, Garg P, Rammamurthy T, Wong H, et al.: Pandemic spread of an O3 : K6 Clone of Vibrio parahaemolyticus and emergence of related strains evidenced by arbitrarily primed PCR and toxRS sequence analyses pandemic spread of an O3 : K6 Clone of Vibrio parahaemolyticus and emergence of related strains. J Clin Microbiol 2000, 38:578-85.
  • [3]Nair GB, Ramamurthy T, Bhattacharya SK, Dutta B, Takeda Y, Sack DA: Global dissemination of Vibrio parahaemolyticus serotype O3:K6 and its serovariants. Clin Microbiol Rev 2007, 20:39-48.
  • [4]Hurley CC, Quirke A, Reen FJ, Boyd EF: Four genomic islands that mark post-1995 pandemic Vibrio parahaemolyticus isolates. BMC Genomics 2006, 7:104. BioMed Central Full Text
  • [5]Okada N, Iida T, Park K-S, Goto N, Yasunaga T, Hiyoshi H, et al.: Identification and characterization of a novel type III secretion system in trh-positive Vibrio parahaemolyticus strain TH3996 reveal genetic lineage and diversity of pathogenic machinery beyond the species level. Infect Immun 2009, 77:904-913.
  • [6]González-escalona N, Cachicas V, Acevedo C, Rioseco ML, Vergara JA, Cabello F, et al.: Vibrio parahaemolyticus diarrhea, Chile, 1998 and 2004. Emerg Infect Dis 2005, 11:129-31.
  • [7]García K, Bastías R, Higuera G, Torres R, Mellado A, Uribe P, et al.: Rise and fall of pandemic Vibrio parahaemolyticus serotype O3:K6 in southern Chile. Environ Microbiol 2013, 15:527-34.
  • [8]García K, Gavilán RG, Höfle MG, Martínez-Urtaza J, Espejo RT: Microevolution of pandemic Vibrio parahaemolyticus assessed by the number of repeat units in short sequence tandem repeat regions. PLoS One 2012, 7:e30823.
  • [9]García K, Torres R, Uribe P, Hernández C, Rioseco ML, Romero J, et al.: Dynamics of clinical and environmental Vibrio parahaemolyticus strains during seafood-related summer diarrhea outbreaks in southern Chile. Appl Environ Microbiol 2009, 75:7482-7487.
  • [10]González-Escalona N, Martinez-Urtaza J, Romero J, Espejo RT, Jaykus L-A, DePaola A: Determination of molecular phylogenetics of vibrio parahaemolyticus strains by multilocus sequence typing. J Bacteriol 2008, 190:2831-2840.
  • [11]Chen Y, Stine OC, Badger JH, Gil AI, Nair GB, Nishibuchi M, et al.: Comparative genomic analysis of Vibrio parahaemolyticus: serotype conversion and virulence. BMC Genomics 2011, 12:294. BioMed Central Full Text
  • [12]Achtman M, Wagner M: Microbial diversity and the genetic nature of microbial species. Nat Rev Microbiol 2008, 6:431-440.
  • [13]Makino K, Oshima K, Kurokawa K, Yokoyama K, Uda T, Tagomori K, et al.: Genome sequence of Vibrio parahaemolyticus: A pathogenic mechanism distinct from that of V cholerae. Lancet 2003, 361:743-749.
  • [14]Zabala B, García K, Espejo RT: Enhancement of UV light sensitivity of a Vibrio parahaemolyticus O3:K6 pandemic strain due to natural lysogenization by a telomeric phage. Appl Environ Microbiol 2009, 75:1697-1702.
  • [15]Zabala B, Hammerl JA, Espejo RT, Hertwig S: The linear plasmid prophage Vp58.5 of Vibrio parahaemolyticus is closely related to the integrating phage VHML and constitutes a new incompatibility group of telomere phages. J Virol 2009, 83:9313-9320.
  • [16]Fuenzalida L, Hernández C, Toro J, Rioseco ML, Romero J, Espejo RT: Vibrio parahaemolyticus in shellfish and clinical samples during two large epidemics of diarrhoea in southern Chile. Environ Microbiol 2006, 8:675-683.
  • [17]Harth E, Matsuda L, Hernández C, Rioseco ML, Romero J, González-Escalona N, et al.: Epidemiology of Vibrio parahaemolyticus Outbreaks, Southern Chile. Emerg Infect Dis 2009, 15:163-168.
  • [18]Katz LS, Petkau A, Beaulaurier J, Tyler S, Antonova ES, Turnsek MA, et al. Evolutionary Dynamics of Vibrio cholerae O1 following a Single- Source Introduction to Haiti. MBio. 2013;2:4(4). pii: e00398-13. doi:10.1128/mBio.00398-13.
  • [19]Kirby JE, Trempy JE, Gottesman S. Excision of a P4-like cryptic prophage leads to Alp protease expression in Escherichia coli. J Bacteriol 1994:2068–81.
  • [20]Kalburge SS, Polson SW, Crotty KB, Katz L, Turnsek M, Tarr CL, et al.: Complete Genome Sequence of Vibrio parahaemolyticus. Genome A 2014, 2:8-9.
  • [21]Naka H, Dias GM, Thompson CC, Dubay C, Thompson FL, Crosa JH, et al.: Complete genome sequence of the marine fish pathogen Vibrio anguillarum harboring the pJM1 virulence plasmid and genomic comparison with other virulent strains of V. anguillarum and V. ordalii. Infect Immun 2011, 79:2889-900.
  • [22]Grim CJ, Hasan NA, Taviani E, Haley B, Chun J, Brettin TS, et al.: Genome sequence of hybrid Vibrio cholerae O1 MJ-1236, B-33, and CIRS101 and comparative genomics with V. cholerae. J Bacteriol 2010, 192:3524-33.
  • [23]Nasu H, Iida T, Sugahara T, Yamaichi Y, Park KS, Yokoyama K, et al.: A filamentous phage associated with recent pandemic Vibrio parahaemolyticus O3:K6 strains. J Clin Microbiol 2000, 38:2156-61.
  • [24]Hazen TH, Wu D, Eisen JA, Sobecky PA: Sequence characterization and comparative analysis of three plasmids isolated from environmental Vibrio spp. Appl Environ Microbiol 2007, 73:7703-10.
  • [25]Esposito D, Scocca JJ: Identification of an HP1 phage protein required for site-specific excision. Mol Microbiol 1994, 13:685-695.
  • [26]Ochman H, Lawrence JG, Groisman EA: Lateral gene transfer and the nature of bacterial innovation. Nature 2000, 405:299-304.
  • [27]Treangen TJ, Rocha EPC: Horizontal transfer, not duplication, drives the expansion of protein families in prokaryotes. PLoS Genet 2011, 7:e1001284.
  • [28]Cho Y-J, Yi H, Lee JH, Kim DW, Chun J: Genomic evolution of Vibrio cholerae. Curr Opin Microbiol 2010, 13:646-51.
  • [29]Nasser W, Beres SB, Olsen RJ, Dean MA, Rice KA, Long SW, et al.: Evolutionary pathway to increased virulence and epidemic group A Streptococcus disease derived from 3,615 genome sequences. Proc Natl Acad Sci U S A 2014, 111:1768-76.
  • [30]Sampaio JLM, Ribeiro VB, Campos JC, Rozales FP, Magagnin CM, Falci DR, et al.: Detection of OXA-370, an OXA-48-Related Class D β-Lactamase, in Enterobacter hormaechei from Brazil. Antimicrob Agents Chemother 2014, 58:3566-3567.
  • [31]Chowdhury NR, Chakraborty S, Ramamurthy T, Nishibuchi M, Yamasaki S, Takeda Y, et al.: Molecular evidence of clonal Vibrio parahaemolyticus pandemic strains. Emerg Infect Dis 2000, 6:631-636.
  • [32]Myers ML, Panicker G, Bej AK: PCR detection of a newly emerged pandemic Vibrio parahaemolyticus O3:K6 pathogen in pure cultures and seeded waters from the Gulf of Mexico. Appl Environ Microbiol 2003, 69:2194-2200.
  • [33]Bolger AM, Lohse M, Usadel B: Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30:1-7.
  • [34]Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, Flanigan MJ, et al.: A whole-genome assembly of Drosophila. Science 2000, 287:2196-2204.
  • [35]Huang X: CAP3: A DNA Sequence Assembly Program. Genome Res 1999, 9:868-877.
  文献评价指标  
  下载次数:7次 浏览次数:13次