期刊论文详细信息
BMC Evolutionary Biology
Evolution of a horizontally acquired legume gene, albumin 1, in the parasitic plant Phelipanche aegyptiaca and related species
Claude W dePamphilis5  James H Westwood7  John I Yoder4  Michael P Timko1  Martin F Wojciechowski8  Paula E Ralph5  Loren A Honaas5  Norman J Wickett6  Yuannian Jiao5  Malay Das7  Eric K Wafula5  Monica Fernandez-Aparicio3  Yeting Zhang2 
[1]Department of Biology, University of Virginia, Charlottesville, VA 22904, U.S.A
[2]Huck Institutes of the Life Science, Penn State University, University Park, PA 16802, USA
[3]Department of Plant Breeding, Institute for Sustainable Agriculture, IAS-CSIC, Córdoba, 14080, Spain
[4]Department of Plant Sciences, University of California, Davis, CA 95616, U.S.A
[5]Department of Biology and Institute of Molecular Evolutionary Genetics, Penn State University, University Park, 16802, PAU.S.A
[6]Chicago Botanic Garden, Glencoe, IL, 60022, U.S.A
[7]Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA, 24061, USA
[8]School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
关键词: Evolution;    Albumin 1;    KNOTTIN;    Legume;    Orobanche;    Phelipanche;    Horizontal gene transfer;    Parasitic plants;   
Others  :  1129781
DOI  :  10.1186/1471-2148-13-48
 received in 2012-10-12, accepted in 2013-02-04,  发布年份 2013
PDF
【 摘 要 】

Background

Parasitic plants, represented by several thousand species of angiosperms, use modified structures known as haustoria to tap into photosynthetic host plants and extract nutrients and water. As a result of their direct plant-plant connections with their host plant, parasitic plants have special opportunities for horizontal gene transfer, the nonsexual transmission of genetic material across species boundaries. There is increasing evidence that parasitic plants have served as recipients and donors of horizontal gene transfer (HGT), but the long-term impacts of eukaryotic HGT in parasitic plants are largely unknown.

Results

Here we show that a gene encoding albumin 1 KNOTTIN-like protein, closely related to the albumin 1 genes only known from papilionoid legumes, where they serve dual roles as food storage and insect toxin, was found in Phelipanche aegyptiaca and related parasitic species of family Orobanchaceae, and was likely acquired by a Phelipanche ancestor via HGT from a legume host based on phylogenetic analyses. The KNOTTINs are well known for their unique “disulfide through disulfide knot” structure and have been extensively studied in various contexts, including drug design. Genomic sequences from nine related parasite species were obtained, and 3D protein structure simulation tests and evolutionary constraint analyses were performed. The parasite gene we identified here retains the intron structure, six highly conserved cysteine residues necessary to form a KNOTTIN protein, and displays levels of purifying selection like those seen in legumes. The albumin 1 xenogene has evolved through >150 speciation events over ca. 16 million years, forming a small family of differentially expressed genes that may confer novel functions in the parasites. Moreover, further data show that a distantly related parasitic plant, Cuscuta, obtained two copies of albumin 1 KNOTTIN-like genes from legumes through a separate HGT event, suggesting that legume KNOTTIN structures have been repeatedly co-opted by parasitic plants.

Conclusions

The HGT-derived albumins in Phelipanche represent a novel example of how plants can acquire genes from other plants via HGT that then go on to duplicate, evolve, and retain the specialized features required to perform a unique host-derived function.

【 授权许可】

   
2013 Zhang et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150226111301599.pdf 1581KB PDF download
Figure 5. 46KB Image download
Figure 4. 42KB Image download
Figure 3. 123KB Image download
Figure 2. 86KB Image download
Figure 1. 118KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Richardson AO, Palmer JD: Horizontal gene transfer in plants. J Exp Bot 2007, 58(1):1-9.
  • [2]Acuna R, Padilla BE, Florez-Ramos CP, Rubio JD, Herrera JC, Benavides P, Lee SJ, Yeats TH, Egan AN, Doyle JJ: Adaptive horizontal transfer of a bacterial gene to an invasive insect pest of coffee. Proc Natl Acad Sci USA 2012, 109(11):4197-4202.
  • [3]Davies J, Davies D: Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 2010, 74(3):417-433.
  • [4]Ochman H, Lawrence JG, Groisman EA: Lateral gene transfer and the nature of bacterial innovation. Nature 2000, 405(6784):299-304.
  • [5]Dobrindt U, Hochhut B, Hentschel U, Hacker J: Genomic islands in pathogenic and environmental microorganisms. Nat Rev Microbiol 2004, 2(5):414-424.
  • [6]Keeling PJ, Palmer JD: Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet 2008, 9(8):605-618.
  • [7]Feschotte C, Pritham EJ: DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet 2007, 41:331-368.
  • [8]Schaack S, Gilbert C, Feschotte C: Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution. Trends Ecol Evol 2010, 25(9):537-546.
  • [9]Cho Y, Qiu YL, Kuhlman P, Palmer JD: Explosive invasion of plant mitochondria by a group I intron. Proc Natl Acad Sci USA 1998, 95(24):14244-14249.
  • [10]Bergthorsson U, Adams KL, Thomason B, Palmer JD: Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature 2003, 424(6945):197-201.
  • [11]Won H, Renner SS: Horizontal gene transfer from flowering plants to Gnetum. Proc Natl Acad Sci USA 2003, 100(19):10824-10829.
  • [12]Bergthorsson U, Richardson AO, Young GJ, Goertzen LR, Palmer JD: Massive horizontal transfer of mitochondrial genes from diverse land plant donors to the basal angiosperm Amborella. Proc Natl Acad Sci USA 2004, 101(51):17747-17752.
  • [13]Davis CC, Wurdack KJ: Host-to-parasite gene transfer in flowering plants: phylogenetic evidence from Malpighiales. Science 2004, 305(5684):676-678.
  • [14]Mower JP, Stefanovic S, Young GJ, Palmer JD: Plant genetics: gene transfer from parasitic to host plants. Nature 2004, 432(7014):165-166.
  • [15]Davis CC, Anderson WR, Wurdack KJ: Gene transfer from a parasitic flowering plant to a fern. Proc Biol Sci 2005, 272(1578):2237-2242.
  • [16]Diao X, Freeling M, Lisch D: Horizontal transfer of a plant transposon. PLoS Biol 2006, 4(1):e5.
  • [17]Barkman TJ, McNeal JR, Lim SH, Coat G, Croom HB, Young ND, Depamphilis CW: Mitochondrial DNA suggests at least 11 origins of parasitism in angiosperms and reveals genomic chimerism in parasitic plants. BMC Evol Biol 2007, 7:248. BioMed Central Full Text
  • [18]Goremykin VV, Salamini F, Velasco R, Viola R: Mitochondrial DNA of Vitis vinifera and the issue of rampant horizontal gene transfer. Mol Biol Evol 2009, 26(1):99-110.
  • [19]Yoshida S, Maruyama S, Nozaki H, Shirasu K: Horizontal gene transfer by the parasitic plant Striga hermonthica. Science 2010, 328(5982):1128.
  • [20]Sanchez-Puerta MV, Cho Y, Mower JP, Alverson AJ, Palmer JD: Frequent, phylogenetically local horizontal transfer of the cox1 group I Intron in flowering plant mitochondria. Mol Biol Evol 2008, 25(8):1762-1777.
  • [21]Christin PA, Edwards EJ, Besnard G, Boxall SF, Gregory R, Kellogg EA, Hartwell J, Osborne CP: Adaptive evolution of C(4) photosynthesis through recurrent lateral gene transfer. Curr Biol 2012, 22(5):445-449.
  • [22]Vallenback P, Jaarola M, Ghatnekar L, Bengtsson BO: Origin and timing of the horizontal transfer of a PgiC gene from Poa to Festuca ovina. Mol Phylogenet Evol 2008, 46(3):890-896.
  • [23]Hepburn NJ, Schmidt DW, Mower JP: Loss of Two Introns from the Magnolia tripetala Mitochondrial cox2 Gene Implicates Horizontal Gene Transfer and Gene Conversion as a Novel Mechanism of Intron Loss. Mol Biol Evol 2012, 29(10):3111-3120.
  • [24]Park JM, Manen JF, Schneeweiss GM: Horizontal gene transfer of a plastid gene in the non-photosynthetic flowering plants Orobanche and Phelipanche (Orobanchaceae). Mol Phylogenet Evol 2007, 43(3):974-985.
  • [25]Xi Z, Bradley RK, Wurdack KJ, Wong KM, Sugumaran M, Bomblies K, Rest JS, Davis CC: Horizontal transfer of expressed genes in a parasitic flowering plant. BMC Genomics 2012, 13(1):227. BioMed Central Full Text
  • [26]Birschwilks M, Haupt S, Hofius D, Neumann S: Transfer of phloem-mobile substances from the host plants to the holoparasite Cuscuta sp. J Exp Bot 2006, 57(4):911-921.
  • [27]Tomilov AA, Tomilova NB, Wroblewski T, Michelmore R, Yoder JI: Trans-specific gene silencing between host and parasitic plants. Plant J 2008, 56(3):389-397.
  • [28]Westwood JH, Roney JK, Khatibi PA, Stromberg VK: RNA translocation between parasitic plants and their hosts. Pest Manag Sci 2009, 65(5):533-539.
  • [29]Louis S, Delobel B, Gressent F, Rahioui I, Quillien L, Vallier A, Rahbe Y: Molecular and biological screening for insect-toxic seed albumins from four legume species. Plant Sci 2004, 167(4):705-714.
  • [30]Louis S, Delobel B, Gressent F, Duport G, Diol O, Rahioui I, Charles H, Rahbe Y: Broad screening of the legume family for variability in seed insecticidal activities and for the occurrence of the A1b-like knottin peptide entomotoxins. Phytochemistry 2007, 68(4):521-535.
  • [31]Gelly JC, Gracy J, Kaas Q, Le-Nguyen D, Heitz A, Chiche L: The KNOTTIN website and database: a new information system dedicated to the knottin scaffold. Nucleic Acids Res 2004, 32(Database issue):D156-D159.
  • [32]Clark RJ, Jensen J, Nevin ST, Callaghan BP, Adams DJ, Craik DJ: The engineering of an orally active conotoxin for the treatment of neuropathic pain. Angew Chem Int Ed Engl 2010, 49(37):6545-6548.
  • [33]Wang X, Connor M, Smith R, Maciejewski MW, Howden ME, Nicholson GM, Christie MJ, King GF: Discovery and characterization of a family of insecticidal neurotoxins with a rare vicinal disulfide bridge. Nat Struct Biol 2000, 7(6):505-513.
  • [34]Jackson PJ, McNulty JC, Yang YK, Thompson DA, Chai B, Gantz I, Barsh GS, Millhauser GL: Design, pharmacology, and NMR structure of a minimized cystine knot with agouti-related protein activity. Biochemistry 2002, 41(24):7565-7572.
  • [35]Clark RJ, Daly NL, Craik DJ: Structural plasticity of the cyclic-cystine-knot framework: implications for biological activity and drug design. Biochem J 2006, 394(Pt 1):85-93.
  • [36]Combelles C, Gracy J, Heitz A, Craik DJ, Chiche L: Structure and folding of disulfide-rich miniproteins: insights from molecular dynamics simulations and MM-PBSA free energy calculations. Proteins 2008, 73(1):87-103.
  • [37]Silverman AP, Levin AM, Lahti JL, Cochran JR: Engineered cystine-knot peptides that bind alpha(v)beta(3) integrin with antibody-like affinities. J Mol Biol 2009, 385(4):1064-1075.
  • [38]Lewis GP: Legumes of the World. Kew: Royal Botanic Gardens; 2005.
  • [39]Joel DM: The new nomenclature of Orobanche and Phelipanche. Weed Res 2009, 49:6-7.
  • [40]Schneeweiss GM: Correlated evolution of life history and host range in the nonphotosynthetic parasitic flowering plants Orobanche and Phelipanche (Orobanchaceae). J Evol Biol 2007, 20(2):471-478.
  • [41]Index of Orobanchaceae http://www.farmalierganes.com/otrospdf/publica/orobanchaceae%20index.htm webcite
  • [42]Soltis DE, Smith SA, Cellinese N, Wurdack KJ, Tank DC, Brockington SF, Refulio-Rodriguez NF, Walker JB, Moore MJ, Carlsward BS: Angiosperm phylogeny: 17 genes, 640 taxa. Am J Bot 2011, 98(4):704-730.
  • [43]Parker C: Observations on the current status of Orobanche and Striga problems worldwide. Pest Manag Sci 2009, 65(5):453-459.
  • [44]Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25(17):3389-3402.
  • [45]PlantGDB http://www.plantgdb.org/ webcite
  • [46]Westwood JH, Yoder JI, Timko MP, dePamphilis CW: The evolution of parasitism in plants. Trends Plant Sci 2010, 15(4):227-235.
  • [47]Parasitic Plant Genome Project http://ppgp.huck.psu.edu/ webcite
  • [48]Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N: Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 2012, 40(Database issue):D1178-D1186.
  • [49]SOL Genomics Network http://solgenomics.net/ webcite
  • [50]Wojciechowski MF, Lavin M, Sanderson MJ: A phylogeny of legumes (Leguminosae) based on analysis of the plastid matK gene resolves many well-supported subclades within the family. Am J Bot 2004, 91(11):1846-1862.
  • [51]Lavin M, Herendeen PS, Wojciechowski MF: Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary. Syst Biol 2005, 54(4):575-594.
  • [52]Medicago truncatula HapMap Project. http://www.medicagohapmap.org/index.php webcite
  • [53]Gracy J, Le-Nguyen D, Gelly JC, Kaas Q, Heitz A, Chiche L: KNOTTIN: the knottin or inhibitor cystine knot scaffold in 2007. Nucleic Acids Res 2008, 36(Database issue):D314-D319.
  • [54]Westwood JH: The Parasitic Plant Genome Project: New Tools for Understanding the Biology of Orobanche and Striga. Weed Sci 2012, 60(2):295-306.
  • [55]Schneeweiss GM, Colwell A, Park JM, Jang CG, Stuessy TF: Phylogeny of holoparasitic Orobanche (Orobanchaceae) inferred from nuclear ITS sequences. Mol Phylogenet Evol 2004, 30(2):465-478.
  • [56]Schneeweiss GM, Palomeque T, Colwell AE, Weiss-Schneeweiss H: Chromosome numbers and karyotype evolution in holoparasitic Orobanche (Orobanchaceae) and related genera. Am J Bot 2004, 91(3):439-448.
  • [57]Manen JF, Habashi C, Jeanmonod D, Park JM, Schneeweiss GM: Phylogeny and intraspecific variability of holoparasitic Orobanche (Orobanchaceae) inferred from plastid rbcL sequences. Mol Phylogenet Evol 2004, 33(2):482-500.
  • [58]Nickrent D: The Parasitic Plant Connection. http://www.parasiticplants.siu.edu/ webcite
  • [59]The 1KP Project http://www.onekp.com/ webcite
  • [60]Johnson F: Transmission of plant viruses by dodder. Phytopathology 1941, 31(7):649-656.
  • [61]Bennett CW: Studies of dodder transmission of plant viruses. Phytopathology 1944, 34(10):905-932.
  • [62]Roney JK, Khatibi PA, Westwood JH: Cross-species translocation of mRNA from host plants into the parasitic plant dodder. Plant Physiol 2007, 143(2):1037-1043.
  • [63]David-Schwartz R, Runo S, Townsley B, Machuka J, Sinha N: Long-distance transport of mRNA via parenchyma cells and phloem across the host-parasite junction in Cuscuta. New Phytol 2008, 179(4):1133-1141.
  • [64]Olmstead RG, dePamphilis CW, Wolfe AD, Young ND, Elisons WJ, Reeves PA: Disintegration of the Scrophulariaceae. Am J Bot 2001, 88(2):348-361.
  • [65]Edgar RC: MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 2004, 5:113. BioMed Central Full Text
  • [66]Stamatakis A: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22(21):2688-2690.
  • [67]Drummond AJ, Rambaut A: BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 2007, 7:214. BioMed Central Full Text
  • [68]Sanderson MJ: r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 2003, 19(2):301-302.
  • [69]Gracy J, Chiche L: Optimizing structural modeling for a specific protein scaffold: knottins or inhibitor cystine knots. BMC Bioinformatics 2010, 11:535. BioMed Central Full Text
  • [70]Pond SL, Frost SD, Muse SV: HyPhy: hypothesis testing using phylogenies. Bioinformatics 2005, 21(5):676-679.
  • [71]Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25(14):1754-1760.
  • [72]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R: The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25(16):2078-2079.
  • [73]Quinlan AR, Hall IM: BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26(6):841-842.
  • [74]EMBL-EBI. http://www.ebi.ac.uk/Databases/ webcite
  文献评价指标  
  下载次数:0次 浏览次数:12次