期刊论文详细信息
BMC Genomics
Virus-independent and common transcriptome responses of leafhopper vectors feeding on maize infected with semi-persistently and persistent propagatively transmitted viruses
Margaret G Redinbaugh2  Pearlly Yan3  Yuting Chen4  Lucy R Stewart2  Andrew P Michel4  Saranga Wijeratne1  Bryan J Cassone5 
[1] Molecular and Cellular Imaging Center, Ohio Agriculture Research and Development Center (OARDC), Wooster, OH 44691, USA;Department of Plant Pathology, Ohio State University, OARDC, Wooster, OH 44691, USA;Department of Molecular Virology, Immunology and Medical Genetics, School of Biomedical Science, Ohio State University, Columbus, OH 43210, USA;Department of Entomology, Ohio State University, OARDC, Wooster, OH 44691, USA;USDA, ARS Corn, Soybean and Wheat Quality Research Unit, Wooster, OH 44691, USA
关键词: Innate immunity;    Viral transmission pathogen response;    Waikavirus;    Nucleorhabdovirus;    Leafhopper;    Gene expression;   
Others  :  1217870
DOI  :  10.1186/1471-2164-15-133
 received in 2013-09-25, accepted in 2014-01-29,  发布年份 2014
PDF
【 摘 要 】

Background

Insects are the most important epidemiological factors for plant virus disease spread, with >75% of viruses being dependent on insects for transmission to new hosts. The black-faced leafhopper (Graminella nigrifrons Forbes) transmits two viruses that use different strategies for transmission: Maize chlorotic dwarf virus (MCDV) which is semi-persistently transmitted and Maize fine streak virus (MFSV) which is persistently and propagatively transmitted. To date, little is known regarding the molecular and cellular mechanisms in insects that regulate the process and efficiency of transmission, or how these mechanisms differ based on virus transmission strategy.

Results

RNA-Seq was used to examine transcript changes in leafhoppers after feeding on MCDV-infected, MFSV-infected and healthy maize for 4 h and 7 d. After sequencing cDNA libraries constructed from whole individuals using Illumina next generation sequencing, the Rnnotator pipeline in Galaxy was used to reassemble the G. nigrifrons transcriptome. Using differential expression analyses, we identified significant changes in transcript abundance in G. nigrifrons. In particular, transcripts implicated in the innate immune response and energy production were more highly expressed in insects fed on virus-infected maize. Leafhoppers fed on MFSV-infected maize also showed an induction of transcripts involved in hemocoel and cell-membrane linked immune responses within four hours of feeding. Patterns of transcript expression were validated for a subset of transcripts by quantitative real-time reverse transcription polymerase chain reaction using RNA samples collected from insects fed on healthy or virus-infected maize for between a 4 h and seven week period.

Conclusions

We expected, and found, changes in transcript expression in G. nigrifrons feeding of maize infected with a virus (MFSV) that also infects the leafhopper, including induction of immune responses in the hemocoel and at the cell membrane. The significant induction of the innate immune system in G. nigrifrons fed on a foregut-borne virus (MCDV) that does not infect leafhoppers was less expected. The changes in transcript accumulation that occur independent of the mode of pathogen transmission could be key for identifying insect factors that disrupt vector-mediated plant virus transmission.

【 授权许可】

   
2014 Cassone et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150709013558174.pdf 1445KB PDF download
Figure 5. 50KB Image download
Figure 4. 23KB Image download
Figure 3. 104KB Image download
Figure 2. 36KB Image download
Figure 1. 54KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Baton LA, Garver LS, Xi ZY, Dimopoulos G: Functional genomics studies on the innate immunity of disease vectors. Insect Sci 2008, 15(1):15-27.
  • [2]Steinert S, Levashina EA: Intracellular immune responses of dipteran insects. Immunol Rev 2011, 240(1):129-140.
  • [3]Hogenhout SA, Ammar ED, Whitfield AE, Redinbaugh MG: Insect vector interactions with persistently transmitted viruses. Annu Rev Phytopathol 2008, 46:327-359.
  • [4]Ng JCK, Falk BW: Virus-vector interactions mediating nonpersistent and semipersistent transmission of plant viruses. Annu Rev Phytopathol 2006, 44:183-212.
  • [5]Ammar ED, Tsai CW, Whitfield AE, Redinbaugh MG, Hogenhout SA: Cellular and molecular aspects of rhabdovirus interactions with insect and plant hosts. Annu Rev Entomol 2009, 54:447-468.
  • [6]Stoner WN, Gustin RD: Biology of Graminella nigrifrons (Homoptera - Cicadellidae) a vector of corn (maize) stunt virus. Ann Entomol Soc Am 1967, 60(3):496-505.
  • [7]Larsen KJ, Madden LV, Nault LR: Effect of temperature and host plant on the development of the blackfaced leafhopper. Entomol Exp Appl 1990, 55(3):285-294.
  • [8]Bradfute OE, Gingery RE, Gordon DT, Nault LR: Tissue ultrastructure, sedimentation and leafhopper transmission of a virus associated with a maize stunting disease. J Cell Biol 1972, 55(2):A25.
  • [9]Louie R, Knoke JK, Gordon DT: Epiphytotics of maize dwarf mosaic and maize chlorotic dwarf diseases in Ohio. Phytopathology 1974, 64(11):1455-1459.
  • [10]Redinbaugh MG, Seifers DL, Meulia T, Abt JJ, Anderson RJ, Styer WE, Ackerman J, Salomon R, Houghton W, Creamer R, et al.: Maize fine streak virus, a new leafhopper-transmitted rhabdovirus. Phytopathology 2002, 92(11):1167-1174.
  • [11]Nault LR, Styer WE, Knoke JK, Pitre HN: Semipersistent transmission of leafhopper-born maize chlorotic dwarf virus. J Econ Entomol 1973, 66(6):1271-1273.
  • [12]Todd JC, Ammar ED, Redinbaugh MG, Hoy C, Hogenhout SA: Plant host range and leafhopper transmission of Maize fine streak virus. Phytopathology 2010, 100(11):1138-1145.
  • [13]Maule AJ: Virus and host plant interactions. eLS 2007.
  • [14]Strand MR: The insect cellular immune response. Insect Sci 2008, 15(1):1-14.
  • [15]Brault V, Tanguy S, Reinbold C, Le Trionnaire G, Arneodo J, Jaubert-Possamai S, Guernec G, Tagu D: Transcriptomic analysis of intestinal genes following acquisition of pea enation mosaic virus by the pea aphid Acyrthosiphon pisum. J Gen Virol 2010, 91(3):802-808.
  • [16]Luan JB, Li JM, Varela N, Wang YL, Li FF, Bao YY, Zhang CX, Liu SS, Wang XW: Global analysis of the transcriptional response of whitefly to Tomato yellow leaf curl China virus reveals the relationship of coevolved adaptations. J Virol 2011, 85(7):3330-3340.
  • [17]Xu Y, Zhou WW, Zhou YJ, Wu JX, Zhou XP: Transcriptome and comparative gene expression analysis of Sogatella furcifera (Horváth) in response to Southern rice black-streaked dwarf virus. Plos One 2012, 7:e36238.
  • [18]Gotz M, Popovski S, Kollenberg M, Gorovits R, Brown JK, Cicero JM, Czosnek H, Winter S, Ghanim M: Implication of Bemisia tabaci heat shock protein 70 in Begomovirus-whitefly interactions. J Virol 2012, 86(24):13241-13252.
  • [19]Tsai CW, McGraw EA, Ammar ED, Dietzgen RG, Hogenhout SA: Drosophila melanogaster mounts a unique immune response to the rhabdovirus Sigma virus. Appl Environ Microb 2008, 74(10):3251-3256.
  • [20]MacKenzie S, Balasch JC, Novoa B, Ribas L, Roher N, Krasnov A, Figueras A: Comparative analysis of the acute response of the trout, O. mykiss, head kidney to in vivo challenge with virulent and attenuated infectious hematopoietic necrosis virus and LPS-induced inflammation. BMC Genomics 2008, 9:141. BioMed Central Full Text
  • [21]Carpenter J, Hutter S, Baines JF, Roller J, Saminadin-Peter SS, Parsch J, Jiggins FM: The Transcriptional Response of Drosophila melanogaster to infection with the Sigma Virus (Rhabdoviridae). Plos One 2009, 4(8):e6838.
  • [22]Whitfield AE, Rotenberg D, Aritua V, Hogenhout SA: Analysis of expressed sequence tags from Maize mosaic rhabdovirus-infected gut tissues of Peregrinus maidis reveals the presence of key components of insect innate immunity. Insect Mol Biol 2011, 20(2):225-242.
  • [23]Chen YT, Cassone BJ, Bai XD, Redinbaugh MG, Michel AP: Transcriptome of the plant virus vector Graminella nigrifrons, and the molecular interactions of Maize fine streak rhabdovirus transmission. Plos One 2012, 7(7):e40613.
  • [24]Atkinson SR, Marguerat S, Bahler J: Exploring long non-coding RNAs through sequencing. Semin Cell Dev Biol 2012, 23(2):200-205.
  • [25]Huang DW, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009, 4(1):44-57.
  • [26]Huang DW, Sherman BT, Tan Q, Collins JR, Alvord WG, Roayaei J, Stephens R, Baseler MW, Lane HC, Lempicki RA: The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol 2007, 8(9):R183. BioMed Central Full Text
  • [27]Dziarski R, Gupta D: The peptidoglycan recognition proteins (PGRPs). Genome Biol 2006, 7(8):232. BioMed Central Full Text
  • [28]Lemaitre B, Hoffmann J: The host defense of Drosophila melanogaster. Annu Rev immunol 2007, 25:697-743.
  • [29]Schmid-Hempel P: Evolutionary ecology of insect immune defenses. Annu Rev Entomol 2005, 50:529-551.
  • [30]Kasschau KD, Carrington JC: A counterdefensive strategy of plant viruses: Suppression of posttranscriptional gene silencing. Cell 1998, 95(4):461-470.
  • [31]Burke G, Fiehn O, Moran N: Effects of facultative symbionts and heat stress on the metabolome of pea aphids. Isme J 2010, 4(2):242-252.
  • [32]Cassone BJ, Molloy MJ, Cheng CD, Tan JC, Hahn MW, Besansky NJ: Divergent transcriptional response to thermal stress by Anopheles gambiae larvae carrying alternative arrangements of inversion 2La. Mol Ecol 2011, 20(12):2567-2580.
  • [33]Pallas V, Garcia JA: How do plant viruses induce disease? Interactions and interference with host components. J Gen Virol 2011, 92:2691-2705.
  • [34]Tajul MI, Naher K, Hossain T, Siddiqui Y, Sariah M: Tomato yellow leaf curl virus (TYLCV) alters the phytochemical constituents in tomato fruits. Aust J Crop Sci 2011, 5(5):575-581.
  • [35]Eigenbrode SD, Ding H, Shiel P, Berger PH: Volatiles from potato plants infected with potato leafroll virus attract and arrest the virus vector, Myzus persicae (Homoptera : Aphididae). P Roy Soc B-Biol Sci 2002, 269(1490):455-460.
  • [36]Jimenez-Martinez ES, Bosque-Perez NA, Berger PH, Zemetra R, Ding HJ, Eigenbrode SD: Volatile cues influence the response of Rhopalosiphum padi (Homoptera : Aphididae) to Barley yellow dwarf virus-infected transgenic and untransformed wheat. Environ Entomol 2004, 33(5):1207-1216.
  • [37]Ngumbi E, Eigenbrode SD, Bosque-Perez NA, Ding H, Rodriguez A: Myzus persicae is arrested more by blends than by individual compounds elevated in headspace of PLRV-Infected potato. J Chem Ecol 2007, 33(9):1733-1747.
  • [38]Hodge S, Powell G: Do plant viruses facilitate their aphid vectors by inducing symptoms that alter behavior and performance? Environ Entomol 2008, 37(6):1573-1581.
  • [39]Werner BJ, Mowry TM, Bosque-Perez NA, Ding HJ, Eigenbrode SD: Changes in green peach aphid responses to potato leafroll virus-induced volatiles emitted during disease progression. Environ Entomol 2009, 38(5):1429-1438.
  • [40]Fereres A, Moreno A: Behavioural aspects influencing plant virus transmission by homopteran insects. Virus Res 2009, 141(2):158-168.
  • [41]Hosack DA, Dennis G, Sherman BT, Lane HC, Lempicki RA: Identifying biological themes within lists of genes with EASE. Genome Biol 2003, 4(10):R70. BioMed Central Full Text
  • [42]Yeh JC, Cummings RD: Differential recognition of glycoprotein acceptors by terminal glycosyltransferases. Glycobiology 1997, 7(2):241-251.
  • [43]Rosales C: Phagocytosis, a cellular immune response in insects. Isj-Invert Surviv J 2011, 8(1):109-131.
  • [44]Williams MJ: Drosophila hemopoiesis and cellular immunity. J Immunol 2007, 178(8):4711-4716.
  • [45]Laporte C, Vetter G, Loudes AM, Robinson DG, Hillmer S, Stussi-Garaud C, Ritzenthaler C: Involvement of the secretory pathway and the cytoskeleton in intracellular targeting and tubule assembly of Grapevine fanleaf virus movement protein in tobacco BY-2 cells. Plant Cell 2003, 15(9):2058-2075.
  • [46]Ruthel G, Demmin GL, Kallstrom G, Javid MP, Badie SS, Will AB, Nelle T, Schokman R, Nguyen TL, Carra JH, et al.: Association of Ebola virus matrix protein VP40 with microtubules. J Virol 2005, 79(8):4709-4719.
  • [47]Harries PA, Schoelz JE, Nelson RS: Intracellular transport of viruses and their components: utilizing the cytoskeleton and membrane highways. Mol Plant Microbe In 2010, 23(11):1381-1393.
  • [48]Schoelz JE, Harries PA, Nelson RS: Intracellular transport of plant viruses: Finding the door out of the cell. Mol Plant 2011, 4(5):813-831.
  • [49]Feder ME, Hofmann GE: Heat-shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology. Annu Rev Physiol 1999, 61:243-282.
  • [50]Sorensen JG, Kristensen TN, Loeschcke V: The evolutionary and ecological role of heat shock proteins. Ecol Lett 2003, 6(11):1025-1037.
  • [51]Nault LR: Arthropod transmission of plant viruses: a new synthesis. Ann Entomol Soc Am 1997, 90(5):521-541.
  • [52]Hunt RE, Nault LR, Gingery RE: Evidence for infectivity of maize chlorotic dwarf virus and for a helper component in its leafhopper transmission. Phytopathology 1988, 78(4):499-504.
  • [53]Louie R, Abt JJ: Mechanical transmission of maize rough dwarf virus. Maydica 2004, 49(3):231-240.
  • [54]Martin J, Bruno VM, Fang ZD, Meng XD, Blow M, Zhang T, Sherlock G, Snyder M, Wang Z: Rnnotator: an automated de novo transcriptome assembly pipeline from stranded RNA-Seq reads. BMC Genomics 2010, 11:663. BioMed Central Full Text
  • [55]Goecks J, Nekrutenko A, Taylor J, Team G: Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 2010, 11(8):R86. BioMed Central Full Text
  • [56]Schulz MH, Zerbino DR, Vingron M, Birney E: Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 2012, 28(8):1086-1092.
  • [57]Li WZ, Godzik A: Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006, 22(13):1658-1659.
  • [58]Sommer DD, Delcher AL, Salzberg SL, Pop M: Minimus: a fast, lightweight genome assembler. BMC Bioinformatics 2007, 8:64. BioMed Central Full Text
  • [59]Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge YC, Gentry J, et al.: Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004, 5(10):R80. BioMed Central Full Text
  • [60]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al.: Gene ontology: tool for the unification of biology. Nat Genet 2000, 25(1):25-29.
  • [61]Gotz S, Garcia-Gomez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talon M, Dopazo J, Conesa A: High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 2008, 36(10):3420-3435.
  • [62]Mortazavi A, Williams BA, Mccue K, Schaeffer L, Wold B: Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008, 5(7):621-628.
  • [63]Robinson MD, Oshlack A: A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 2010, 11(3):R25. BioMed Central Full Text
  • [64]Rozen S, Skaletsky HJ: Primer3 on the WWW for general users and for biologist programmers. In Bioinformatics Methods and Protocols: Methods in Molecular Biology. Edited by Misener S, SA K. Totowa (NJ): Humana Press Inc; 2000:365-386.
  • [65]Pfaffl MW: A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001, 29(9):e45.
  • [66]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods 2001, 25(4):402-408.
  文献评价指标  
  下载次数:6次 浏览次数:2次