| BMC Structural Biology | |
| Type I pyridoxal 5′-phosphate dependent enzymatic domains embedded within multimodular nonribosomal peptide synthetase and polyketide synthase assembly lines | |
| Stefano Pascarella1  Ingeborg Grgurina1  Alessandro Paiardini1  Teresa Milano1  | |
| [1] Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza - Università di Roma, Roma 00185, Italy | |
| 关键词: Docking; Protein-protein interaction; Homology modeling; Hidden Markov models; Tailoring domains; Polyketide synthases; Nonribosomal peptide synthetases; Fold type I; Pyridoxal 5′-phosphate; | |
| Others : 793724 DOI : 10.1186/1472-6807-13-26 |
|
| received in 2013-06-24, accepted in 2013-10-14, 发布年份 2013 | |
PDF
|
|
【 摘 要 】
Background
Pyridoxal 5′-phosphate (PLP)-dependent enzymes of fold type I, the most studied structural class of the PLP-dependent enzyme superfamily, are known to exist as stand-alone homodimers or homotetramers. These enzymes have been found also embedded in multimodular and multidomain assembly lines involved in the biosynthesis of polyketides (PKS) and nonribosomal peptides (NRPS). The aim of this work is to provide a proteome-wide view of the distribution and characteristics of type I domains covalently integrated in these assemblies in prokaryotes.
Results
An ad-hoc Hidden Markov profile was calculated using a sequence alignment derived from a multiple structural superposition of distantly related PLP-enzymes of fold type I. The profile was utilized to scan the sequence databank and to collect the proteins containing at least one type I domain linked to a component of an assembly line in bacterial genomes. The domains adjacent to a carrier protein were further investigated. Phylogenetic analysis suggested the presence of four PLP-dependent families: Aminotran_3, Beta_elim_lyase and Pyridoxal_deC, occurring mainly within mixed NRPS/PKS clusters, and Aminotran_1_2 found mainly in PKS clusters. Sequence similarity to the reference PLP enzymes with solved structures ranged from 24 to 42% identity. Homology models were built for each representative type I domain and molecular docking simulations with putative substrates were carried out. Prediction of the protein-protein interaction sites evidenced that the surface regions of the type I domains embedded within multienzyme assemblies were different from those of the self-standing enzymes; these structural features appear to be required for productive interactions with the adjacent domains in a multidomain context.
Conclusions
This work provides a systematic view of the occurrence of type I domain within NRPS and PKS assembly lines and it predicts their structural characteristics using computational methods. Comparison with the corresponding stand-alone enzymes highlighted the common and different traits related to various aspects of their structure-function relationship. Therefore, the results of this work, on one hand contribute to the understanding of the functional and structural diversity of the PLP-dependent type I enzymes and, on the other, pave the way to further studies aimed at their applications in combinatorial biosynthesis.
【 授权许可】
2013 Milano et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140705054720686.pdf | 1881KB | ||
| Figure 5. | 144KB | Image | |
| Figure 4. | 163KB | Image | |
| Figure 3. | 151KB | Image | |
| Figure 2. | 78KB | Image | |
| Figure 1. | 196KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]Schneider G, Kack H, Lindqvist Y: The manifold of vitamin B6 dependent enzymes. Structure 2000, 8:R1-R6.
- [2]Clayton PT: B6-responsive disorders: a model of vitamin dependency. J Inherit Metab Dis 2006, 29:317-326.
- [3]Eliot AC, Kirsch JF: Pyridoxal phosphate enzymes: mechanistic, structural, and evolutionary considerations. Annu Rev Biochem 2004, 73:383-415.
- [4]Denessiouk KA, Denesyuk AI, Lehtonen JV, Korpela T, Johnson MS: Common structural elements in the architecture of the cofactor-binding domains in unrelated families of pyridoxal phosphate-dependent enzymes. Proteins 1999, 35:250-261.
- [5]Paiardini A, Bossa F, Pascarella S: Evolutionarily conserved regions and hydrophobic contacts at the superfamily level: the case of the fold-type I, pyridoxal-5′-phosphate-dependent enzymes. Protein Sci 2004, 13:2992-3005.
- [6]Kirsch JF, Eichele G, Ford GC, Vincent MG, Jansonius JN, Gehring H, Christen P: Mechanism of action of aspartate aminotransferase proposed on the basis of its spatial structure. J Mol Biol 1984, 174:497-525.
- [7]Rigali S, Derouaux A, Giannotta F, Dusart J: Subdivision of the helix-turn-helix GntR family of bacterial regulators in the FadR, HutC, MocR, and YtrA subfamilies. J Biol Chem 2002, 277:12507-12515.
- [8]Bramucci E, Milano T, Pascarella S: Genomic distribution and heterogeneity of MocR-like transcriptional factors containing a domain belonging to the superfamily of the pyridoxal-5′-phosphate dependent enzymes of fold type I. Biochem Biophys Res Commun 2011, 415:88-93.
- [9]Fischbach MA, Walsh CT: Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem Rev 2006, 106:3468-3496.
- [10]Felnagle EA, Jackson EE, Chan YA, Podevels AM, Berti AD, McMahon MD, Thomas MG: Nonribosomal peptide synthetases involved in the production of medically relevant natural products. Mol Pharm 2008, 5:191-211.
- [11]Zhang W, Ostash B, Walsh CT: Identification of the biosynthetic gene cluster for the pacidamycin group of peptidyl nucleoside antibiotics. Proc Natl Acad Sci USA 2010, 107:16828-16833.
- [12]Gerber R, Lou L, Du L: A PLP-dependent polyketide chain releasing mechanism in the biosynthesis of mycotoxin fumonisins in Fusarium verticillioides. J Am Chem Soc 2009, 131:3148-3149.
- [13]Silakowski B, Kunze B, Nordsiek G, Blocker H, Hofle G, Muller R: The myxochelin iron transport regulon of the myxobacterium Stigmatella aurantiaca Sg a15. Eur J Biochem 2000, 267:6476-6485.
- [14]Masschelein J, Mattheus W, Gao LJ, Moons P, Van Houdt R, Uytterhoeven B, Lamberigts C, Lescrinier E, Rozenski J, Herdewijn P, Aertsen A, Michiels C, Lavigne R: A PKS/NRPS/FAS hybrid gene cluster from Serratia plymuthica RVH1 encoding the biosynthesis of three broad spectrum, zeamine-related antibiotics. PLoS One 2013, 8:e54143.
- [15]Aron ZD, Dorrestein PC, Blackhall JR, Kelleher NL, Walsh CT: Characterization of a new tailoring domain in polyketide biogenesis: the amine transferase domain of MycA in the mycosubtilin gene cluster. J Am Chem Soc 2005, 127:14986-14987.
- [16]Garneau-Tsodikova S, Dorrestein PC, Kelleher NL, Walsh CT: Protein assembly line components in prodigiosin biosynthesis: characterization of PigA, G, H, I, J. J Am Chem Soc 2006, 128:12600-12601.
- [17]Paiardini A, Bossa F, Pascarella S: CAMPO, SCR_FIND and CHC_FIND: a suite of web tools for computational structural biology. Nucleic Acids Res 2005, 33:W50-W55.
- [18]Olson SA: EMBOSS opens up sequence analysis. European Molecular Biology Open Software Suite. Brief Bioinform 2002, 3:87-91.
- [19]Mehta PK, Christen P: The molecular evolution of pyridoxal-5′-phosphate-dependent enzymes. Adv Enzymol Relat Areas Mol Biol 2000, 74:129-184.
- [20]Percudani R, Peracchi A: The B6 database: a tool for the description and classification of vitamin B6-dependent enzymatic activities and of the corresponding protein families. BMC Bioinforma 2009, 10:273.
- [21]Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA, Weber T, Takano E, Breitling R: antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res 2011, 39:W339-W346.
- [22]Blin K, Medema MH, Kazempour D, Fischbach MA, Breitling R, Takano E, Weber T: antiSMASH 2.0–a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Res 2013, 41:W204-W212.
- [23]Tang GL, Cheng YQ, Shen B: Leinamycin biosynthesis revealing unprecedented architectural complexity for a hybrid polyketide synthase and nonribosomal peptide synthetase. Chem Biol 2004, 11:33-45.
- [24]Cheng YQ, Tang GL, Shen B: Type I polyketide synthase requiring a discrete acyltransferase for polyketide biosynthesis. Proc Natl Acad Sci USA 2003, 100:3149-3154.
- [25]Schulze JO, Schubert WD, Moser J, Jahn D, Heinz DW: Evolutionary relationship between initial enzymes of tetrapyrrole biosynthesis. J Mol Biol 2006, 358:1212-1220.
- [26]Ikushiro H, Islam MM, Okamoto A, Hoseki J, Murakawa T, Fujii S, Miyahara I, Hayashi H: Structural insights into the enzymatic mechanism of serine palmitoyltransferase from Sphingobacterium multivorum. J Biochem 2009, 146:549-562.
- [27]Lowther J, Charmier G, Raman MC, Ikushiro H, Hayashi H, Campopiano DJ: Role of a conserved arginine residue during catalysis in serine palmitoyltransferase. FEBS Lett 2011, 585:1729-1734.
- [28]Milic D, Demidkina TV, Faleev NG, Matkovic-Calogovic D, Antson AA: Insights into the catalytic mechanism of tyrosine phenol-lyase from X-ray structures of quinonoid intermediates. J Biol Chem 2008, 283:29206-29214.
- [29]Fenalti G, Law RH, Buckle AM, Langendorf C, Tuck K, Rosado CJ, Faux NG, Mahmood K, Hampe CS, Banga JP, et al.: GABA production by glutamic acid decarboxylase is regulated by a dynamic catalytic loop. Nat Struct Mol Biol 2007, 14:280-286.
- [30]Kozakov D, Hall DR, Beglov D, Brenke R, Comeau SR, Shen Y, Li K, Zheng J, Vakili P, Paschalidis I, Vajda S: Achieving reliability and high accuracy in automated protein docking: ClusPro, PIPER, SDU, and stability analysis in CAPRI rounds 13–19. Proteins 2010, 78:3124-3130.
- [31]Giardina G, Montioli R, Gianni S, Cellini B, Paiardini A, Voltattorni CB, Cutruzzola F: Open conformation of human DOPA decarboxylase reveals the mechanism of PLP addition to Group II decarboxylases. Proc Natl Acad Sci USA 2011, 108:20514-20519.
- [32]Hennig M, Grimm B, Contestabile R, John RA, Jansonius JN: Crystal structure of glutamate-1-semialdehyde aminomutase: an alpha2-dimeric vitamin B6-dependent enzyme with asymmetry in structure and active site reactivity. Proc Natl Acad Sci USA 1997, 94:4866-4871.
- [33]Silakowski B, Nordsiek G, Kunze B, Blocker H, Muller R: Novel features in a combined polyketide synthase/non-ribosomal peptide synthetase: the myxalamid biosynthetic gene cluster of the myxobacterium Stigmatella aurantiaca Sga15. Chem Biol 2001, 8:59-69.
- [34]Alexeev D, Alexeeva M, Baxter RL, Campopiano DJ, Webster SP, Sawyer L: The crystal structure of 8-amino-7-oxononanoate synthase: a bacterial PLP-dependent, acyl-CoA-condensing enzyme. J Mol Biol 1998, 284:401-419.
- [35]Phillips RS, Demidkina TV, Faleev NG: Structure and mechanism of tryptophan indole-lyase and tyrosine phenol-lyase. Biochim Biophys Acta 2003, 1647:167-172.
- [36]Liu P, Torrens-Spence MP, Ding H, Christensen BM, Li J: Mechanism of cysteine-dependent inactivation of aspartate/glutamate/cysteine sulfinic acid alpha-decarboxylases. Amino Acids 2013, 44:391-404.
- [37]Skoldberg F, Rorsman F, Perheentupa J, Landin-Olsson M, Husebye ES, Gustafsson J, Kampe O: Analysis of antibody reactivity against cysteine sulfinic acid decarboxylase, a pyridoxal phosphate-dependent enzyme, in endocrine autoimmune disease. J Clin Endocrinol Metab 2004, 89:1636-1640.
- [38]Edwards DJ, Marquez BL, Nogle LM, McPhail K, Goeger DE, Roberts MA, Gerwick WH: Structure and biosynthesis of the jamaicamides, new mixed polyketide-peptide neurotoxins from the marine cyanobacterium Lyngbya majuscula. Chem Biol 2004, 11:817-833.
- [39]McPhalen CA, Vincent MG, Jansonius JN: X-ray structure refinement and comparison of three forms of mitochondrial aspartate aminotransferase. J Mol Biol 1992, 225:495-517.
- [40]Sieber SA, Linne U, Hillson NJ, Roche E, Walsh CT, Marahiel MA: Evidence for a monomeric structure of nonribosomal peptide synthetases. Chem Biol 2002, 9:997-1008.
- [41]Hillson NJ, Walsh CT: Dimeric structure of the six-domain VibF subunit of vibriobactin synthetase: mutant domain activity regain and ultracentrifugation studies. Biochemistry 2003, 42:766-775.
- [42]Richter CD, Nietlispach D, Broadhurst RW, Weissman KJ: Multienzyme docking in hybrid megasynthetases. Nat Chem Biol 2008, 4:75-81.
- [43]Uniprot Consortium: Update on activities at the Universal Protein Resource(UniProt) in 2013. Nucleic Acids Res 2013, 41(Database issue):D43-47.
- [44]Rose PW, Beran B, Bi C, Bluhm WF, Dimitropoulos D, Goodsell DS, Prlic A, Quesada M, Quinn GB, Westbrook JD, et al.: The RCSB Protein Data Bank: redesigned web site and web services. Nucleic Acids Res 2011, 39:D392-D401.
- [45]Finn RD, Clements J, Eddy SR: HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 2011, 39:W29-W37.
- [46]Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389-3402.
- [47]Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, et al.: Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23:2947-2948.
- [48]Katoh K, Kuma K, Toh H, Miyata T: MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 2005, 33:511-518.
- [49]Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ: Jalview Version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 2009, 25:1189-1191.
- [50]Gouy M, Guindon S, Gascuel O: SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 2010, 27:221-224.
- [51]Shindyalov IN, Bourne PE: Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng 1998, 11:739-747.
- [52]Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, et al.: The Pfam protein families database. Nucleic Acids Res 2012, 40:D290-D301.
- [53]Tamura K, Dudley J, Nei M, Kumar S: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 2007, 24:1596-1599.
- [54]Rzhetsky A, Nei M: Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference. J Mol Evol 1992, 35:367-375.
- [55]Jones DT, Taylor WR, Thornton JM: The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 1992, 8:275-282.
- [56]Schrodinger LLC: The PyMOL Molecular Graphics System, Version 1.6.0.0. Portland, OR, USA; 2013.
- [57]Sali A, Blundell TL: Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 1993, 234:779-815.
- [58]Bramucci E, Paiardini A, Bossa F, Pascarella S: PyMod: sequence similarity searches, multiple sequence-structure alignments, and homology modeling within PyMOL. BMC Bioinforma 2012, 13(4):S2.
- [59]Wiederstein M, Sippl MJ: ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 2007, 35:W407-W410.
- [60]Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM: AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 1996, 8:477-486.
- [61]Bennett-Lovsey RM, Herbert AD, Sternberg MJ, Kelley LA: Exploring the extremes of sequence/structure space with ensemble fold recognition in the program Phyre. Proteins 2008, 70:611-625.
- [62]Thomsen R, Christensen MH: MolDock: a new technique for high-accuracy molecular docking. J Med Chem 2006, 49:3315-3321.
- [63]Gouet P, Courcelle E, Stuart DI, Metoz F: ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 1999, 15:305-308.
- [64]Qin S, Zhou HX: meta-PPISP: a meta web server for protein-protein interaction site prediction. Bioinformatics 2007, 23:3386-3387.
PDF