期刊论文详细信息
BMC Microbiology
Staphylococcus epidermidis recovered from indwelling catheters exhibit enhanced biofilm dispersal and “self-renewal” through downregulation of agr
Zhiqiang Qin3  Søren Molin1  Victoria J Findlay2  Chris Parsons3  Liang Yang1  Lu Dai4 
[1] Infection Microbiology Group, Centre for Systems Biology, Technical University of Denmark, DK-2800, Lyngby, Denmark;Departments of Pathology and Laboratory Medicine, Medical University of South Carolina, 86 Jonathan Lucas St., Charleston, SC, 29425, USA;Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, Stanley S. Scott Cancer Center, 533 Bolivar St., New Orleans, LA, 70112, USA;Departments of Medicine, Louisiana State University Health Sciences Center, Stanley S. Scott Cancer Center, 533 Bolivar St., New Orleans, LA, 70112, USA
关键词: Extracellular DNA;    Autolysis;    Biofilm;    Staphylococcus epidermidis;   
Others  :  1221890
DOI  :  10.1186/1471-2180-12-102
 received in 2012-01-10, accepted in 2012-05-23,  发布年份 2012
PDF
【 摘 要 】

Background

In recent years, Staphylococcus epidermidis ( Se) has become a major nosocomial pathogen and the most common cause of infections of implanted prostheses and other indwelling devices. This is due in part to avid biofilm formation by Se on device surfaces. However, it still remains unknown that how the process of Se biofilm development is associated with relapsed infection in such patients.

Results

We have identified clinical Se isolates displaying enhanced biofilm dispersal and self-renewal relative to reference strain. These isolates also exhibit enhanced initial cell attachment, extracellular DNA release, cell autolysis and thicker microcolonies during biofilm development relative to reference strain. Our genetic analyses suggest that these clinical isolates exhibit significant downregulation of RNAIII, the effector molecule of the agr quorum sensing system, and upregulation of the autolysin gene atlE. Isogenic deletion of the agr system in Se 1457 confirmed that agr negatively regulating atlE resulted in enhanced initial cell attachment, extracellular DNA release, cell autolysis and biofilm formation abilities. In contrast, double deletion of agr and atlE significantly abolished these features.

Conclusions

Collectively, these data reveal the role of agr system in long-term biofilm development and pathogenesis during Se caused indwelling devices-related relapsed infection.

【 授权许可】

   
2012 Dai et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150804075327270.pdf 2283KB PDF download
Figure 7. 39KB Image download
Figure 6. 34KB Image download
Figure 5. 64KB Image download
Figure 4. 15KB Image download
Figure 3. 17KB Image download
Figure 2. 25KB Image download
104KB Image download
【 图 表 】

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Raad II, Bodey GP: Infectious complications of indwelling vascular catheters. Clin Infect Dis 1992, 15(2):197-208.
  • [2]Rupp ME, Archer GL: Coagulase-negative staphylococci: pathogens associated with medical progress. Clin Infect Dis 1994, 19(2):231-243. quiz 244-235
  • [3]von Eiff C, Peters G, Heilmann C: Pathogenesis of infections due to coagulase-negative staphylococci. Lancet Infect Dis 2002, 2(11):677-685.
  • [4]Vadyvaloo V, Otto M: Molecular genetics of Staphylococcus epidermidis biofilms on indwelling medical devices. Int J Artif Organs 2005, 28(11):1069-1078.
  • [5]Gotz F: Staphylococcus and biofilms. Mol Microbiol 2002, 43(6):1367-1378.
  • [6]Mack D, Becker P, Chatterjee I, Dobinsky S, Knobloch JK, Peters G, Rohde H, Herrmann M: Mechanisms of biofilm formation in Staphylococcus epidermidis and Staphylococcus aureus: functional molecules, regulatory circuits, and adaptive responses. Int J Med Microbiol 2004, 294(2–3):203-212.
  • [7]Heilmann C, Hussain M, Peters G, Gotz F: Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol 1997, 24(5):1013-1024.
  • [8]Rupp ME, Fey PD, Heilmann C, Gotz F: Characterization of the importance of Staphylococcus epidermidis autolysin and polysaccharide intercellular adhesin in the pathogenesis of intravascular catheter-associated infection in a rat model. J Infect Dis 2001, 183(7):1038-1042.
  • [9]Mack D, Fischer W, Krokotsch A, Leopold K, Hartmann R, Egge H, Laufs R: The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1,6-linked glucosaminoglycan: purification and structural analysis. J Bacteriol 1996, 178(1):175-183.
  • [10]Mack D, Riedewald J, Rohde H, Magnus T, Feucht HH, Elsner HA, Laufs R, Rupp ME: Essential functional role of the polysaccharide intercellular adhesin of Staphylococcus epidermidis in hemagglutination. Infect Immun 1999, 67(2):1004-1008.
  • [11]Qin Z, Ou Y, Yang L, Zhu Y, Tolker-Nielsen T, Molin S, Qu D: Role of autolysin-mediated DNA release in biofilm formation of Staphylococcus epidermidis. Microbiology 2007, 153(Pt 7):2083-2092.
  • [12]Vuong C, Saenz HL, Gotz F, Otto M: Impact of the agr quorum-sensing system on adherence to polystyrene in Staphylococcus aureus. J Infect Dis 2000, 182(6):1688-1693.
  • [13]Vuong C, Gerke C, Somerville GA, Fischer ER, Otto M: Quorum-sensing control of biofilm factors in Staphylococcus epidermidis. J Infect Dis 2003, 188(5):706-718.
  • [14]Yarwood JM, Bartels DJ, Volper EM, Greenberg EP: Quorum sensing in Staphylococcus aureus biofilms. J Bacteriol 2004, 186(6):1838-1850.
  • [15]Peng HL, Novick RP, Kreiswirth B, Kornblum J, Schlievert P: Cloning, characterization, and sequencing of an accessory gene regulator (agr) in Staphylococcus aureus. J Bacteriol 1988, 170(9):4365-4372.
  • [16]Clark JD, Maaloe O: DNA replication and the cell cycle in Escherichia coli cells. J Mol Biology 1967, 23(2):99-112.
  • [17]Jager S, Mack D, Rohde H, Horstkotte MA, Knobloch JK: Disintegration of Staphylococcus epidermidis biofilms under glucose-limiting conditions depends on the activity of the alternative sigma factor sigmaB. Appl Environ Microbiol 2005, 71(9):5577-5581.
  • [18]Moller S, Sternberg C, Andersen JB, Christensen BB, Ramos JL, Givskov M, Molin S: In situ gene expression in mixed-culture biofilms: evidence of metabolic interactions between community members. Appl Environ Microbiol 1998, 64(2):721-732.
  • [19]Li M, Guan M, Jiang XF, Yuan FY, Xu M, Zhang WZ, Lu Y: Genetic polymorphism of the accessory gene regulator (agr) locus in Staphylococcus epidermidis and its association with pathogenicity. J Med Microbiol 2004, 53(Pt 6):545-549.
  • [20]Pynnonen M, Stephenson RE, Schwartz K, Hernandez M, Boles BR: Hemoglobin promotes Staphylococcus aureus nasal colonization. PLoS Pathog 2011, 7(7):e1002104.
  • [21]Evans RC, Holmes CJ: Effect of vancomycin hydrochloride on Staphylococcus epidermidis biofilm associated with silicone elastomer. Antimicrob Agents Chemother (Bethesda) 1987, 31(6):889-894.
  • [22]Prosser BL, Taylor D, Dix BA, Cleeland R: Method of evaluating effects of antibiotics on bacterial biofilm. Antimicrob Agents Chemother (Bethesda) 1987, 31(10):1502-1506.
  • [23]Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A: The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 1999, 37(6):1771-1776.
  • [24]Pitz AM, Yu F, Hermsen ED, Rupp ME, Fey PD, Olsen KM: Vancomycin susceptibility trends and prevalence of heterogeneous vancomycin-intermediate Staphylococcus aureus in clinical methicillin-resistant S. aureus isolates. J Clin Microbiol 2011, 49(1):269-274.
  • [25]Adair CG, Gorman SP, Feron BM, Byers LM, Jones DS, Goldsmith CE, Moore JE, Kerr JR, Curran MD, Hogg G, et al.: Implications of endotracheal tube biofilm for ventilator-associated pneumonia. Intensive Care Med 1999, 25(10):1072-1076.
  • [26]Wang R, Khan BA, Cheung GY, Bach TH, Jameson-Lee M, Kong KF, Queck SY, Otto M: Staphylococcus epidermidis surfactant peptides promote biofilm maturation and dissemination of biofilm-associated infection in mice. J Clin Invest 2011, 121(1):238-248.
  • [27]Boles BR, Horswill AR: Staphylococcal biofilm disassembly. Trends Microbiol 2011, 19(9):449-455.
  • [28]Otto M: Staphylococcus aureus and Staphylococcus epidermidis peptide pheromones produced by the accessory gene regulator agr system. Peptides 2001, 22(10):1603-1608.
  • [29]Vuong C, Kocianova S, Yao Y, Carmody AB, Otto M: Increased colonization of indwelling medical devices by quorum-sensing mutants of Staphylococcus epidermidis in vivo. J Infect Dis 2004, 190(8):1498-1505.
  • [30]Moore PC, Lindsay JA: Genetic variation among hospital isolates of methicillin-sensitive Staphylococcus aureus: evidence for horizontal transfer of virulence genes. J Clin Microbiol 2001, 39(8):2760-2767.
  • [31]Boles BR, Horswill AR: Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog 2008, 4(4):e1000052.
  • [32]Rice KC, Mann EE, Endres JL, Weiss EC, Cassat JE, Smeltzer MS, Bayles KW: The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus. Proc Natl Acad Sci USA 2007, 104(19):8113-8118.
  文献评价指标  
  下载次数:60次 浏览次数:29次