期刊论文详细信息
BMC Evolutionary Biology
Convergent evolution of [D-Leucine1] microcystin-LR in taxonomically disparate cyanobacteria
Kaarina Sivonen3  Jouko Rikkinen4  João Sarkis Yunes1  Marli Fátima Fiore2  Matti Wahlsten3  Jouni Jokela3  Leo Rouhiainen3  David P Fewer3  Ulla Kaasalainen4  Tânia Keiko Shishido3 
[1] Unidade de Pesquisas em Cianobactérias, Federal University of Rio Grande, Av. Itália km 8 - Caixa Postal 474, Rio Grande, RS, 96.201-900, Brazil;Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba, SP, 13400-970, Brazil;Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Viikki Biocenter (Viikinkaari 9), P.O. Box 56, Helsinki, FIN-00014, Finland;Department of Biosciences, University of Helsinki, Viikki Biocenter (Viikinkaari 1), P.O. Box 65, Helsinki, FIN-00014, Finland
关键词: Recombination;    Point mutations;    Gene conversion;    Substrate specificity;    Phylogeny;    Adenylation domain;   
Others  :  1126973
DOI  :  10.1186/1471-2148-13-86
 received in 2012-11-12, accepted in 2013-04-09,  发布年份 2013
PDF
【 摘 要 】

Background

Many important toxins and antibiotics are produced by non-ribosomal biosynthetic pathways. Microcystins are a chemically diverse family of potent peptide toxins and the end-products of a hybrid NRPS and PKS secondary metabolic pathway. They are produced by a variety of cyanobacteria and are responsible for the poisoning of humans as well as the deaths of wild and domestic animals around the world. The chemical diversity of the microcystin family is attributed to a number of genetic events that have resulted in the diversification of the pathway for microcystin assembly.

Results

Here, we show that independent evolutionary events affecting the substrate specificity of the microcystin biosynthetic pathway have resulted in convergence on a rare [D-Leu1] microcystin-LR chemical variant. We detected this rare microcystin variant from strains of the distantly related genera Microcystis, Nostoc, and Phormidium. Phylogenetic analysis performed using sequences of the catalytic domains within the mcy gene cluster demonstrated a clear recombination pattern in the adenylation domain phylogenetic tree. We found evidence for conversion of the gene encoding the McyA2 adenylation domain in strains of the genera Nostoc and Phormidium. However, point mutations affecting the substrate-binding sequence motifs of the McyA2 adenylation domain were associated with the change in substrate specificity in two strains of Microcystis. In addition to the main [D-Leu1] microcystin-LR variant, these two strains produced a new microcystin that was identified as [Met1] microcystin-LR.

Conclusions

Phylogenetic analysis demonstrated that both point mutations and gene conversion result in functional mcy gene clusters that produce the same rare [D-Leu1] variant of microcystin in strains of the genera Microcystis, Nostoc, and Phormidium. Engineering pathways to produce recombinant non-ribosomal peptides could provide new natural products or increase the activity of known compounds. Our results suggest that the replacement of entire adenylation domains could be a more successful strategy to obtain higher specificity in the modification of the non-ribosomal peptides than point mutations.

【 授权许可】

   
2013 Shishido et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150219024303150.pdf 3612KB PDF download
Figure 7. 31KB Image download
Figure 6. 104KB Image download
Figure 5. 181KB Image download
Figure 4. 154KB Image download
Figure 3. 107KB Image download
Figure 2. 88KB Image download
Figure 1. 34KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Walsh CT, Chen H, Keating TA, Hubbard BK, Losey HC, Luo L, Marshall CG, Miller DA, Patel HM: Tailoring enzymes that modify nonribosomal peptides during and after chain elongation on NRPS assembly lines. Curr Opin Chem Biol 2001, 5:525-534.
  • [2]Finking R, Marahiel MA: Biosynthesis of nonribosomal peptides. Annu Rev Microbiol 2004, 58:453-488.
  • [3]Sieber SA, Marahiel MA: Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. Chem Rev 2005, 105:715-738.
  • [4]Kallow W, Neuhof T, Arezi B, Jungblut P, Von Döhren H: Penicillin biosynthesis: intermediates of biosynthesis of delta-alpha-aminoadipyl-cysteinyl-valine formed by ACV synthetase from Acremonium chrysogenum. FEBS Lett 1997, 414:74-78.
  • [5]Steenbergen J, Alder J, Thorne G, Tally F: Daptomycin: a lipopeptide antibiotic for the treatment of serious gram-positive infections. J Antimicrob Chemother 2005, 55:283-288.
  • [6]Shen B, Du L, Sanchez C, Edwards D, Chen M, Murrell J: The biosynthetic gene cluster for the anticancer drug bleomycin from Streptomyces verticillus ATCC 15003 as a model for hybrid peptide-polyketide natural product biosynthesis. J Ind Microbiol Biotechnol 2001, 27:378-385.
  • [7]Stachelhaus T, Mootz HD, Marahiel MA: The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 1999, 6:493-505.
  • [8]Sivonen K, Jones G: Cyanobacterial toxins. In Toxic cyanobacteria in water. Edited by Chorus I, Bartram J. London: E & FN Spon; 1999:41-111.
  • [9]Kuiper-Goodman T, Falconer IR, Fitzgerald DJ: Human health aspects. In Toxic Cyanobacteria in Water: a Guide to their Public Health Consequences, Monitoring and Management. Edited by Chorus I, Bartram J. London: E and FN Spon; 1999:113-153.
  • [10]Tillett D, Dittmann E, Erhard M, Von Döhren H, Börner T, Neilan BA: Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide polyketide synthetase system. Chem Biol 2000, 7:753-764.
  • [11]Christiansen G, Fastner J, Erhard M, Börner T, Dittmann E: Microcystin biosynthesis in Planktothrix: Genes, Evolution, and Manipulation. J Bacteriol 2003, 185:564-572.
  • [12]Rouhiainen L, Vakkilainen T, Siemer BL, Buikema W, Haselkorn R, Sivonen K: Genes coding for hepatotoxic heptapeptides (microcystins) in the cyanobacterium Anabaena strain 90. Appl Environ Microbiol 2004, 70:686-692.
  • [13]Dittmann E, Börner T: Genetic contributions to the risk assessment of microcystin in the environment. Toxicol Appl Pharmacol 2005, 203:192-200.
  • [14]Rantala A, Fewer DP, Hisbergues M, Rouhiainen L, Vaitomaa J, Borner T, Sivonen K: Phylogenetic evidence for the early evolution of microcystin synthesis. Proc Natl Acad Sci USA 2004, 101:568-573.
  • [15]Jungblut AD, Neilan BA: Molecular identification and evolution of the cyclic peptide hepatotoxins, microcystin and nodularin, synthetase genes in three orders of cyanobacteria. Arch Microbiol 2006, 185:107-114.
  • [16]Fewer DP, Rouhiainen L, Jokela J, Wahlsten M, Laakso K, Wang H, Sivonen K: Recurrent adenylation domain replacement in the microcystin synthetase gene cluster. BMC Evol Biol 2007, 7:183.
  • [17]Christiansen G, Molitor C, Philmus B, Kurmayer R: Nontoxic strains of cyanobacteria are the result of major gene deletion events induced by a transposable element. Mol Biol Evol 2008, 25:1695-1704.
  • [18]Mikalsen B, Boison G, Skulberg OM, Fastner J, Davies W, Gabrielsen TM, Rudi K, Jacobsen KS: Natural variation in the microcystin synthetase operon mcyABC and impact on microcystin production in Microcystis strains. J Bacteriol 2003, 185:2774-2785.
  • [19]Tanabe Y, Kaya KT, Watanabe MM: Evidence for recombination in the microcystin synthetase (mcy) genes of toxic cyanobacteria Microcystis spp. J Mol Evol 2004, 58:633-641.
  • [20]Tanabe Y, Sano T, Kasai F, Watanabe MM: Recombination, cryptic clades and neutral molecular divergence of the microcystin synthetase (mcy) genes of toxic cyanobacterium Microcystis aeruginosa. BMC Evol Biol 2009, 9:115.
  • [21]Kurmayer R, Christiansen G, Gumpenberger M, Fastner J: Genetic identification of microcystin ecotypes in toxic cyanobacteria of the genus Planktothrix. Microbiology 2005, 151:1525-1533.
  • [22]Kurmayer R, Gumpenberger M: Diversity of microcystin genotypes among populations of the filamentous cyanobacteria Planktothrix rubescens and Planktothrix agardhii. Mol Ecol 2006, 15:3849-3861.
  • [23]Tooming-Klunderud A, Mikalsen B, Kristensen T, Jakobsen KS: The mosaic structure of the mcyABC operon in Microcystis. Microbiology 2008, 154:1886-1899.
  • [24]Tooming-Klunderud A, Fewer DP, Rohrlack T, Jokela J, Rouhiainen L, Sivonen K, Kristensen T, Jakobsen KS: Evidence for positive selection acting on microcystin synthetase adenylation domains in three cyanobacterial genera. BMC Evol Biol 2008, 8:256.
  • [25]Christiansen G, Yoshida WY, Blom JF, Portmann C, Gademann K, Hemscheidt T, Kurmayer R: Isolation and structure determination of two microcystins and sequence comparison of the McyABC adenylation domains in Planktothrix species. J Nat Prod 2008, 71:1881-1886.
  • [26]Fewer DP, Tooming-Klunderud A, Jokela J, Wahlsten M, Rouhiainen L, Kristensen T, Rohrlack T, Jakobsen KS, Sivonen K: Natural occurrence of microcystin synthetase deletion mutants capable of producing microcystins in strains of the genus Anabaena (Cyanobacteria). Microbiology 2008, 154:1007-1014.
  • [27]Matthiensen A, Beattie KA, Yunes JS, Kaya K, Codd GA: [D-Leu1]Microcystin-LR, from the cyanobacterium Microcystis RST 9501 and from a Microcystis bloom in the Patos Lagoon estuary, Brazil. Phytochemistry 2000, 55:383-387.
  • [28]Park H, Namikoshi M, Brittain SM, Carmichael WW, Murphy T: [D-Leu(1)] microcystin-LR, a new microcystin isolated from waterbloom in a Canadian prairie lake. Toxicon 2001, 39:855-862.
  • [29]Schripsema J, Dagnino D: Spectral assignments and reference data complete assignment of the NMR spectra of [D-Leu1]-microcystin-LR and analysis of its solution structure. Magn Reson Chem 2002, 40:614-617.
  • [30]Albuquerque EC Jr, Melo LFC, Franco TT: Use of solid-phase extraction, high-performance liquid chromatography, and MALDI-TOF identification for [D-Leu1] MCYST-LR analysis in treated water: validation of the analytical methodology. Can J Anal Sci Spectrosc. 2007, 52:1-10.
  • [31]Kaasalainen U, Fewer DP, Jokela J, Wahlsten M, Sivonen K, Rikkinen J: Cyanobacteria produce a high variety of hepatotoxic peptides in symbiosis. Proc Natl Acad Sci USA 2012, 109:5886-5891.
  • [32]Amoutzias GD, Van de Peer Y, Mossialos D: Evolution and taxonomic distribution of nonribosomal peptide and polyketide synthases. Future Microbiol 2008, 3:361-370.
  • [33]Dittmann E, Fewer DP, Neilan BA: Cyanobacterial toxins: biosynthetic routes and evolutionary roots. FEMS Microbiol Rev 2013, 37:23-43.
  • [34]Soares RM, Magalhaes VF, Azevedo SMFO: Accumulation and depuration of microcystins (cyanobacteria hepatotoxins) in Tilapia rendalli (Cichlidae) under laboratory conditions. Aquat Toxicol 2004, 70:1-10.
  • [35]Wood SA, Mountfort D, Selwood AI, Holland PT, Puddick J, Cary SC: Widespread distribution and identification of eight novel microcystins in Antarctic cyanobacterial mats. Appl Environ Microbiol 2008, 74:7243-7251.
  • [36]Sivonen K, Namikoshi M, Evans WR, Fardig M, Carmichael WW, Rinehart KL: Three new microcystins, cyclic heptapeptide hepatotoxins, from Nostoc sp. strain 152. Chem Res Toxicol 1992, 5:464-469.
  • [37]Oksanen I, Jokela J, Fewer DP, Wahlsten M, Rikkinen J, Sivonen K: Discovery of rare and highly toxic microcystins from lichen-associated cyanobacterium Nostoc sp. strain IO-102-I. Appl Environ Microbiol 2004, 70:5756-5763.
  • [38]Kaasalainen U, Jokela J, Fewer DP, Sivonen K, Rikkinen J: Microcystin production in the tripartite cyanolichen Peltigera leucophlebia. Mol Plant Microbe Interact 2009, 22:695-702.
  • [39]Sivonen K: Cyanobacterial Toxins. In Encyclopedia of Microbiology. Edited by Moselio S. Oxford: Elsevier; 2009:290-307.
  • [40]Mez K, Beattie K, Codd G, Hanselmann K, Hauser B, Naegeli H, Preisig H: Identification of a microcystin in benthic cyanobacteria linked to cattle deaths on alpine pastures in Switzerland. Eur J Phycol. 1997, 32:111-117.
  • [41]Aboal M, Puig MA: Intracellular and dissolved microcystin in reservoirs of the river Segura basin, Murcia, SE Spain. Toxicon 2005, 45:509-518.
  • [42]Dasey M, Ryan N, Wilson J, McGregor G, Fabbro L, Neilan BA, Burns BP, Kankaanpää H, Morrison LF, Codd GA, Rissik D, Bowling L: Investigations into the taxonomy, toxicity and ecology of benthic cyanobacterial accumulations in Myall Lake, Australia. Mar Freshw Res 2005, 56:45-55.
  • [43]Hitzfeld BC, Lampert CS, Spaeth N, Mountfort D, Kaspar H, Dietrich DR: Toxin production in cyanobacterial mats from ponds on the McMurdo Ice Shelf, Antarctica. Toxicon 2000, 38:1731-1748.
  • [44]Mohamed ZA, El-Sharouny HM, Ali WSM: Microcystin production in benthic mats of cyanobacteria in the Nile River and irrigation canals. Egypt. Toxicon 2006, 47:584-590.
  • [45]Wood SA, Heath MW, Holland PT, Munday R, McGregor GB, Ryan KG: Identification of a benthic microcystin-producing filamentous cyanobacterium (Oscillatoriales) associated with a dog poisoning in New Zealand. Toxicon 2010, 55:897-903.
  • [46]Izaguirre G, Jungblut AD, Neilan BA: Benthic cyanobacteria (Oscillatoriaceae) that produce microcystin-LR, isolated from four reservoirs in southern California. Water Res 2007, 41:492-498.
  • [47]Sano T, Usui K, Ueda H, Osada H, Kaya K: Isolation of new protein phosphatase inhibitors from two cyanobacteria species. Planktothrix spp. J Nat Prod. 2001, 64:1052-1055.
  • [48]Namikoshi M, Rinehart KL, Sakai R, Stotts RR, Dahlem AM, Beasley VR, Carmichael WW, Evans WR: Identification of 12 hepatotoxins from a Homer Lake bloom of the cyanobacteriaMicrocystis aeruginosa, Microcystis viridis, and Microcystis wesenbergii: nine new microcystins. J Org Chem 1992, 57:866-872.
  • [49]Rouhiainen L, Jokela J, Fewer DP, Urmann M, Sivonen K: Two alternative starter modules for the non-ribosomal biosynthesis of specific anabaenopeptin variants in Anabaena (Cyanobacteria). Chem Biol 2010, 17:265-273.
  • [50]Fujii K, Sivonen K, Adachi K, Noguchi K, Sano H, Hirayama K, Suzuki M, Harada K-I: Comparative study of toxic and non-toxic cyanobacterial products: novel peptides from toxic Nodularia spumigena AV1. Tetrahedron Lett 1997, 38:5525-5528.
  • [51]Caboche S, Leclere V, Pupin M, Kucherov G, Jacques P: Diversity of monomers in nonribosomal peptides: towards the prediction of origin and biological activity. J Bacteriol 2010, 192:5143-5150.
  • [52]Ohtake A, Shirai M, Aida T, Mori N, Harada K-I, Matsuura K, Suzuki M, Nakano M: Toxicity of Microcystis species isolated from natural blooms and purification of the toxin. Appl Environ Microbiol 1989, 55:3202-3207.
  • [53]Hoffmann D, Hevel JM, Moore RE, Moore BS: Sequence analysis and biochemical characterization of the nostopeptolide A biosynthetic gene cluster from Nostoc sp. GSV224. Gene 2003, 311:171-180.
  • [54]Utkilen H, Gjølme N: Iron-stimulated toxin production in Microcystis aeruginosa. Appl Environ Microbiol 1995, 61:797-800.
  • [55]Rohrlack T, Dittmann E, Henning M, Borner T, Kohl JG: Role of microcystins in poisoning and food ingestion inhibition of Daphnia galeata caused by the cyanobacterium Microcystis aeruginosa. Appl Environ Microbiol 1999, 65:737-739.
  • [56]Rohrlack T, Dittmann E, Börner T, Christoffersen K: Effects of cell-bound microcystins on survival and feeding of Daphnia spp. Appl Environ Microbiol 2001, 67:3523-3529.
  • [57]Dittmann E, Erhard M, Kaebernick M, Scheler C, Neilan BA, Von Döhren H, Börner T: Altered expression of two light-dependent genes in a microcystin-lacking mutant of Microcystis aeruginosa PCC 7806. Microbiology 2001, 147:3113-3119.
  • [58]Babica P, Bláha L, Maršálek B: Exploring the natural role of microcystins – a review of effects on photoautotrophic organisms. J Phycol 2006, 42:9-20.
  • [59]Schatz D, Keren Y, Vardi A, Sukenik A, Carmeli S, Börner T, Dittmann E, Kaplan A: Towards clarification of the biological role of microcystins, a family of cyanobacterial toxins. Environ Microbiol 2007, 4:965-970.
  • [60]Jenke-Kodama H, Dittmann E: Evolution of metabolic diversity: insights from microbial polyketide synthases. Phytochemistry 2009, 70:1858-1866.
  • [61]Challis GL, Ravel J, Townsend CA: Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem Biol 2000, 7:211-224.
  • [62]Conti E, Stachelhaus T, Marahiel MA, Brick P: Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S. EMBO J 1997, 16:4174-4183.
  • [63]Eppelmann K, Stachelhaus T, Marahiel MA: Exploitation of the selectivity-conferring code of nonribosomal peptide synthetases for the rational design of novel peptide antibiotics. Biochemistry 2002, 41:9718-9726.
  • [64]Villiers BRM, Hollfelder F: Mapping the limits of substrate specificity of the adenylation domain of TycA. Chembiochem 2009, 10:671-682.
  • [65]Lin TP, Chen CL, Chang LK, Tschen JSM, Liu ST: Functional and transcriptional analyses of a fengycin synthetase gene, fen C, from Bacillus subtilis. J Bacteriol 1999, 181:5060-5067.
  • [66]Konz D, Doekel S, Marahiel MA: Molecular and biochemical characterization of the protein template controlling biosynthesis of the lipopeptide lichenysin. J Bacteriol 1999, 181:133-140.
  • [67]Rounge TB, Rohrlack T, Kristensen T, Jakobsen KS: Recombination and selectional forces in cyanopeptolin NRPS operons from highly similar, but geographically remote Planktothrix strains. BMC Microbiol 2008, 8:141.
  • [68]Allen MB: Simple conditions for growth of unicellular blue-green algae on plates. J Phycol 1968, 4:1-4.
  • [69]Kotai J: Instructions for Preparation of Modified Nutrient Solution Z8 for Algae. Norwegian Institute for Water Research, publication B-11/69. Oslo: Blindern; 1972.
  • [70]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28:2731-2739.
  • [71]Bachmann BO, Ravel J: In silico prediction of microbial secondary metabolic pathways from DNA sequence data. Methods Enzymol 2009, 458:181-217.
  • [72]Rausch C, Weber T, Kohlbacher O, Wohlleben W, Hudson DH: Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs). Nucleic Acids Res 2005, 33:5799-5808.
  • [73]Röttig M, Medema MH, Bin K, Weber T, Rausch C, Kohbacher O: NRPSpredictor2—a web server for predicting NRPS adenylation domain specificity. Nucleic Acids Res 2011, 39:W362-W367.
  • [74]Heath L, van der Walt E, Varsani A, Martin DP: Recombination patterns in aphthoviruses mirror those found in other picornaviruses. J Virol 2006, 80:11827-11832.
  • [75]Martin DP, Lemey P, Lott M, Moulton V, Posada D, Lefeuvre P: RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics 2010, 26:2462-2463.
  • [76]Martin D, Rybicki E: RDP: detection of recombination amongst aligned sequences. Bioinformatics 2000, 16:562-563.
  • [77]Martin DP, Posada D, Crandall KA, Williamson C: A modified BOOTSCAN algorithm for automated identification of recombinant sequences and recombination breakpoints. AIDS Res Hum Retroviruses 2005, 21:98-102.
  • [78]Padidam M, Sawyer S, Fauquet CM: Possible emergence of new geminiviruses by frequent recombination. Virology 1999, 265:218-225.
  • [79]Maynard Smith J: Analyzing the mosaic structure of genes. J Mol Evol 1992, 34:126-129.
  • [80]Posada D, Crandall KA: Evaluation of methods for detecting recombination from DNA sequences: Computer simulations. Proc Natl Acad Sci USA 2001, 98:13757-13762.
  • [81]Gibbs MJ, Armstrong JS, Gibbs AJ: Sister-Scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics 2000, 16:573-582.
  • [82]Boni MF, Posada D, Feldman MW: An exact nonparametric method for inferring mosaic structure in sequence triplets. Genetics 2007, 176:1035-1047.
  • [83]Simmonds P: SSE: A nucleotide and amino acid sequence analysis platform. BMC Res Notes. 2012, 5:50.
  • [84]Jokela J, Herfindal L, Wahlsten M, Permi P, Selheim F, Vasconcelos V, Døskeland SO, Sivonen K: A novel cyanobacterial nostocyclopeptide is a potent antitoxin against microcystins. Chembiochem 2010, 11:1594-1599.
  文献评价指标  
  下载次数:81次 浏览次数:21次