期刊论文详细信息
BMC Cancer
Phospho-aspirin (MDC-22) inhibits breast cancer in preclinical animal models: an effect mediated by EGFR inhibition, p53 acetylation and oxidative stress
Basil Rigas2  Nengtai Ouyang1  Ninche Alston2  Kvetoslava Vrankova2  Ka Wing Cheng2  Yu Sun2  Gerardo G Mackenzie2  Chi C Wong2  Liqun Huang2 
[1]Medicon Pharmaceuticals, Inc, Setauket, NY 11733, USA
[2]Division of Cancer Prevention, Department of Medicine, Stony Brook University, Stony Brook, New York 11794-8173, USA
关键词: Oxidative stress;    p53;    Epidermal growth factor receptor (EGFR);    Non-steroidal anti-inflammatory drugs;    Phospho-aspirin;    Triple-negative breast cancer;    Breast cancer;   
Others  :  859015
DOI  :  10.1186/1471-2407-14-141
 received in 2013-12-17, accepted in 2014-02-21,  发布年份 2014
PDF
【 摘 要 】

Background

The anticancer properties of aspirin are restricted by its gastrointestinal toxicity and its limited efficacy. Therefore, we synthesized phospho-aspirin (PA-2; MDC-22), a novel derivative of aspirin, and evaluated its chemotherapeutic and chemopreventive efficacy in preclinical models of triple negative breast cancer (TNBC).

Methods

Efficacy of PA-2 was evaluated in human breast cancer cells in vitro, and in orthotopic and subcutaneous TNBC xenografts in nude mice. Mechanistic studies were also carried out to elucidate the mechanism of action of PA-2.

Results

PA-2 inhibited the growth of TNBC cells in vitro more potently than aspirin. Treatment of established subcutaneous TNBC xenografts (MDA-MB-231 and BT-20) with PA-2 induced a strong growth inhibitory effect, resulting in tumor stasis (79% and 90% inhibition, respectively). PA-2, but not aspirin, significantly prevented the development of orthotopic MDA-MB-231 xenografts (62% inhibition). Mechanistically, PA-2: 1) inhibited the activation of epidermal growth factor receptor (EGFR) and suppressed its downstream signaling cascades, including PI3K/AKT/mTOR and STAT3; 2) induced acetylation of p53 at multiple lysine residues and enhanced its DNA binding activity, leading to cell cycle arrest; and 3) induced oxidative stress by suppressing the thioredoxin system, consequently inhibiting the activation of the redox sensitive transcription factor NF-κB. These molecular alterations were observed in vitro and in vivo, demonstrating their relevance to the anticancer effect of PA-2.

Conclusions

Our findings demonstrate that PA-2 possesses potent chemotherapeutic efficacy against TNBC, and is also effective in its chemoprevention, warranting further evaluation as an anticancer agent.

【 授权许可】

   
2014 Huang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140724064147529.pdf 2216KB PDF download
48KB Image download
47KB Image download
72KB Image download
80KB Image download
51KB Image download
84KB Image download
79KB Image download
89KB Image download
87KB Image download
【 图 表 】

【 参考文献 】
  • [1]Siegel R, Naishadham D, Jemal A: Cancer statistics, 2012. CA Cancer J Clin 2012, 62(1):10-29.
  • [2]Rinsema TJ: One hundred years of aspirin. Med Hist 1999, 43(4):502-507.
  • [3]Stanley P, Hegedus R: Aspirin–the first hundred years. Biologist (London) 2000, 47(5):269-271.
  • [4]Baron JA: What now for aspirin and cancer prevention? J Natl Cancer Inst 2004, 96(1):4-5.
  • [5]Baron JA, Cole BF, Sandler RS, Haile RW, Ahnen D, Bresalier R, McKeown-Eyssen G, Summers RW, Rothstein R, Burke CA, Snover DC, Church TR, Allen JI, Beach M, Beck GJ, Bond JH, Byers T, Greenberg ER, Mandel JS, Marcon N, Mott LA, Pearson L, Saibil F, van Stolk RU: A randomized trial of aspirin to prevent colorectal adenomas. N Engl J Med 2003, 348(10):891-899.
  • [6]Marshall SF, Bernstein L, Anton-Culver H, Deapen D, Horn-Ross PL, Mohrenweiser H, Peel D, Pinder R, Purdie DM, Reynolds P, Stram D, West D, Wright WE, Ziogas A, Ross RK: Nonsteroidal anti-inflammatory drug use and breast cancer risk by stage and hormone receptor status. J Natl Cancer Inst 2005, 97(11):805-812.
  • [7]Piazza GA, Keeton AB, Tinsley HN, Gary BD, Whitt JD, Mathew B, Thaiparambil J, Coward L, Gorman G, Li Y, Sani B, Hobrath JV, Maxuitenko YY, Reynolds RC: A novel sulindac derivative that does not inhibit cyclooxygenases but potently inhibits colon tumor cell growth and induces apoptosis with antitumor activity. Cancer Prev Res (Phila) 2009, 2(6):572-580.
  • [8]Wong CC, Cheng KW, Xie G, Zhou D, Zhu CH, Constantinides PP, Rigas B: Carboxylesterases 1 and 2 hydrolyze phospho-nonsteroidal anti-inflammatory drugs: relevance to their pharmacological activity. J Pharmacol Exp Ther 2012, 340(2):422-432.
  • [9]Huang L, Mackenzie G, Ouyang N, Sun Y, Xie G, Johnson F, Komninou D, Rigas B: The novel phospho-non-steroidal anti-inflammatory drugs, OXT-328, MDC-22 and MDC-917, inhibit adjuvant-induced arthritis in rats. Br J Pharmacol 2011, 162(7):1521-1533.
  • [10]Gasco M, Shami S, Crook T: The p53 pathway in breast cancer. Breast Cancer Res 2002, 4(2):70-76. BioMed Central Full Text
  • [11]Price JT, Tiganis T, Agarwal A, Djakiew D, Thompson EW: Epidermal growth factor promotes MDA-MB-231 breast cancer cell migration through a phosphatidylinositol 3′-kinase and phospholipase C-dependent mechanism. Cancer Res 1999, 59(21):5475-5478.
  • [12]Cancer Genome Atlas Network: Comprehensive molecular portraits of human breast tumours. Nature 2012, 490(7418):61-70.
  • [13]Dancey JE, Freidlin B: Targeting epidermal growth factor receptor–are we missing the mark? Lancet 2003, 362(9377):62-64.
  • [14]Vousden KH, Prives C: Blinded by the light: the growing complexity of p53. Cell 2009, 137(3):413-431.
  • [15]Zhao W, Mackenzie GG, Murray OT, Zhang Z, Rigas B: Phosphoaspirin (MDC-43), a novel benzyl ester of aspirin, inhibits the growth of human cancer cell lines more potently than aspirin: a redox-dependent effect. Carcinogenesis 2009, 30(3):512-519.
  • [16]Mackenzie GG, Sun Y, Huang L, Xie G, Ouyang N, Gupta RC, Johnson F, Komninou D, Kopelovich L, Rigas B: Phospho-sulindac (OXT-328), a novel sulindac derivative, is safe and effective in colon cancer prevention in mice. Gastroenterology 2010, 139(4):1320-1332.
  • [17]Hundley TR, Gilfillan AM, Tkaczyk C, Andrade MV, Metcalfe DD, Beaven MA: Kit and FcepsilonRI mediate unique and convergent signals for release of inflammatory mediators from human mast cells. Blood 2004, 104(8):2410-2417.
  • [18]Ouyang N, Williams JL, Rigas B: NO-donating aspirin isomers downregulate peroxisome proliferator-activated receptor (PPAR){delta} expression in APCmin/+ mice proportionally to their tumor inhibitory effect: Implications for the role of PPAR{delta} in carcinogenesis. Carcinogenesis 2006, 27(2):232-239.
  • [19]Rigas B, Kozoni V: The novel phenylester anticancer compounds: Study of a derivative of aspirin (phoshoaspirin). Int J Oncol 2008, 32(1):97-100.
  • [20]Likhite V: Aspirin and Breast Cancer: Studies In Mice. In Central Reginoal Meeting of the American Chemical Society. Cleveland, Ohio; 2009.
  • [21]Baumgart A, Seidl S, Vlachou P, Michel L, Mitova N, Schatz N, Specht K, Koch I, Schuster T, Grundler R, Kremer M, Fend F, Siveke JT, Peschel C, Duyster J, Dechow T: ADAM17 regulates epidermal growth factor receptor expression through the activation of Notch1 in non-small cell lung cancer. Cancer Res 2010, 70(13):5368-5378.
  • [22]Soussi T, Lozano G: p53 mutation heterogeneity in cancer. Biochem Biophys Res Commun 2005, 331(3):834-842.
  • [23]Meek DW, Anderson CW: Posttranslational modification of p53: cooperative integrators of function. Cold Spring Harb Perspect Biol 2009, 1(6):a000950.
  • [24]Tang Y, Zhao W, Chen Y, Zhao Y, Gu W: Acetylation is indispensable for p53 activation. Cell 2008, 133(4):612-626.
  • [25]Marimuthu S, Chivukula RS, Alfonso LF, Moridani M, Hagen FK, Bhat GJ: Aspirin acetylates multiple cellular proteins in HCT-116 colon cancer cells: identification of novel targets. Int J Oncol 2011, 39(5):1273-1283.
  • [26]Ito A, Kawaguchi Y, Lai CH, Kovacs JJ, Higashimoto Y, Appella E, Yao TP: MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation. EMBO J 2002, 21(22):6236-6245.
  • [27]Solomon JM, Pasupuleti R, Xu L, McDonagh T, Curtis R, DiStefano PS, Huber LJ: Inhibition of SIRT1 catalytic activity increases p53 acetylation but does not alter cell survival following DNA damage. Mol Cell Biol 2006, 26(1):28-38.
  • [28]Taneja P, Maglic D, Kai F, Sugiyama T, Kendig RD, Frazier DP, Willingham MC, Inoue K: Critical roles of DMP1 in human epidermal growth factor receptor 2/neu-Arf-p53 signaling and breast cancer development. Cancer Res 2010, 70(22):9084-9094.
  • [29]Sun Y, Huang L, Mackenzie GG, Rigas B: Oxidative stress mediates through apoptosis the anticancer effect of phospho-nonsteroidal anti-inflammatory drugs: implications for the role of oxidative stress in the action of anticancer agents. J Pharmacol Exp Ther 2011, 338(3):775-783.
  • [30]Basu S: F2-isoprostanes in human health and diseases: from molecular mechanisms to clinical implications. Antioxid Redox Signal 2008, 10(8):1405-1434.
  • [31]Tacconelli S, Capone ML, Patrignani P: Measurement of 8-iso-prostaglandin F2alpha in biological fluids as a measure of lipid peroxidation. Methods Mol Biol 2010, 644:165-178.
  • [32]Mukherjee A, Martin SG: The thioredoxin system: a key target in tumour and endothelial cells. Br J Radiol 2008, 81(Spec No 1):S57-S68.
  • [33]Matthews JR, Wakasugi N, Virelizier JL, Yodoi J, Hay RT: Thioredoxin regulates the DNA binding activity of NF-kappa B by reduction of a disulphide bond involving cysteine 62. Nucleic Acids Res 1992, 20(15):3821-3830.
  • [34]Wong CC, Cheng KW, Rigas B: Preclinical predictors of anticancer drug efficacy: critical assessment with emphasis on whether nanomolar potency should be required of candidate agents. J Pharmacol Exp Ther 2012, 341(3):572-578.
  • [35]Cuzick J, Otto F, Baron JA, Brown PH, Burn J, Greenwald P, Jankowski J, La Vecchia C, Meyskens F, Senn HJ, Thun M: Aspirin and non-steroidal anti-inflammatory drugs for cancer prevention: an international consensus statement. Lancet Oncol 2009, 10(5):501-507.
  • [36]Tsutsui S, Kataoka A, Ohno S, Murakami S, Kinoshita J, Hachitanda Y: Prognostic and predictive value of epidermal growth factor receptor in recurrent breast cancer. Clin Cancer Res 2002, 8(11):3454-3460.
  • [37]Tsutsui S, Ohno S, Murakami S, Hachitanda Y, Oda S: Prognostic value of epidermal growth factor receptor (EGFR) and its relationship to the estrogen receptor status in 1029 patients with breast cancer. Breast Cancer Res Treat 2002, 71(1):67-75.
  • [38]Nielsen TO, Hsu FD, Jensen K, Cheang M, Karaca G, Hu Z, Hernandez-Boussard T, Livasy C, Cowan D, Dressler L, Akslen LA, Ragaz J, Gown AM, Gilks CB, van de Rijn M, Perou CM: Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 2004, 10(16):5367-5374.
  • [39]Sternlicht MD, Sunnarborg SW: The ADAM17-amphiregulin-EGFR axis in mammary development and cancer. J Mammary Gland Biol Neoplasia 2008, 13(2):181-194.
  • [40]Walerych D, Napoli M, Collavin L, Del Sal G: The rebel angel: mutant p53 as the driving oncogene in breast cancer. Carcinogenesis 2012, 33(11):2007-2017.
  • [41]Frazier DP, Kendig RD, Kai F, Maglic D, Sugiyama T, Morgan RL, Fry EA, Lagedrost SJ, Sui G, Inoue K: Dmp1 physically interacts with p53 and positively regulates p53′s stability, nuclear localization, and function. Cancer Res 2012, 72(7):1740-1750.
  • [42]Sun Y, Rigas B: The thioredoxin system mediates redox-induced cell death in human colon cancer cells: implications for the mechanism of action of anticancer agents. Cancer Res 2008, 68(20):8269-8277.
  • [43]Kim SJ, Miyoshi Y, Taguchi T, Tamaki Y, Nakamura H, Yodoi J, Kato K, Noguchi S: High thioredoxin expression is associated with resistance to docetaxel in primary breast cancer. Clin Cancer Res 2005, 11(23):8425-8430.
  • [44]Yamamoto M, Taguchi Y, Ito-Kureha T, Semba K, Yamaguchi N, Inoue J: NF-kappaB non-cell-autonomously regulates cancer stem cell populations in the basal-like breast cancer subtype. Nat Commun 2013, 4:2299.
  文献评价指标  
  下载次数:67次 浏览次数:30次