期刊论文详细信息
BMC Medical Genomics
Molecular subtypes of urothelial carcinoma are defined by specific gene regulatory systems
Mattias Höglund2  Gottfrid Sjödahl1  Fredrik Liedberg1  Srinivas Veerla2  Mattias Aine2  Pontus Eriksson2 
[1] Division of Urological Research, Department of Clinical Sciences Malmö, Lund University, Malmö SE-205 02, Skåne, Sweden;Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund SE-223 81, Skåne, Sweden
关键词: Molecular subtypes;    Gene signatures;    Transcription factor;    Bladder cancer;    Urothelial carcinoma;   
Others  :  1210996
DOI  :  10.1186/s12920-015-0101-5
 received in 2015-02-25, accepted in 2015-05-20,  发布年份 2015
PDF
【 摘 要 】

Background

Molecular stratification of bladder cancer has revealed gene signatures differentially expressed across tumor subtypes. While these signatures provide important insights into subtype biology, the transcriptional regulation that governs these signatures is not well characterized.

Methods

In this study, we use publically available ChIP-Seq data on regulatory factor binding in order to link transcription factors to gene signatures defining molecular subtypes of urothelial carcinoma.

Results

We identify PPARG and STAT3, as well as ADIRF, a novel regulator of fatty acid metabolism, as putative mediators of the SCC-like phenotype. We link the PLK1-FOXM1 axis to the rapidly proliferating Genomically Unstable and SCC-like subtypes and show that differentiation programs involving PPARG/RXRA, FOXA1/GATA3 and HOXA/HOXB are differentially expressed in UC molecular subtypes. We show that gene signatures and regulatory systems defined in urothelial carcinoma operate in breast cancer in a subtype specific manner, suggesting similarities at the gene regulatory level of these two tumor types.

Conclusions

At the gene regulatory level Urobasal, Genomically Unstable and SCC-like tumors represents three fundamentally different tumor types. Urobasal tumors maintain an apparent urothelial differentiation axis composed of PPARG/RXRA, FOXA1/GATA3 and anterior HOXA and HOXB genes. Genomically Unstable and SCC-like tumors differ from Urobasal tumors by a strong increase of proliferative activity through the PLK1-FOXM1 axis operating in both subtypes. However, whereas SCC-like tumors evade urothelial differentiation by a block in differentiation through strong downregulation of PPARG/RXRA, FOXA1/GATA3, our data indicates that Genomically Unstable tumors evade differentiation in a more dynamic manner.

【 授权许可】

   
2015 Eriksson et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150609020441646.pdf 3635KB PDF download
Fig. 8. 34KB Image download
Fig. 7. 101KB Image download
Fig. 6. 217KB Image download
Fig. 5. 93KB Image download
Fig. 4. 177KB Image download
Fig. 3. 66KB Image download
Fig. 2. 203KB Image download
Fig. 1. 226KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

【 参考文献 】
  • [1]Shin K, Lee J, Guo N, Kim J, Lim A, Qu L, et al.: Hedgehog/Wnt feedback supports regenerative proliferation of epithelial stem cells in bladder. Nature 2011, 472(7341):110-4.
  • [2]DeGraff DJ, Cates JM, Mauney JR, Clark PE, Matusik RJ, Adam RM: When urothelial differentiation pathways go wrong: implications for bladder cancer development and progression. Urol Oncol 2013, 31(6):802-11.
  • [3]Sjodahl G, Lauss M, Lovgren K, Chebil G, Gudjonsson S, Veerla S, et al.: A molecular taxonomy for urothelial carcinoma. Clin Cancer Res 2012, 18(12):3377-86.
  • [4]Sjodahl G, Lovgren K, Lauss M, Patschan O, Gudjonsson S, Chebil G, et al.: Toward a molecular pathologic classification of urothelial carcinoma. Am J Pathol 2013, 183(3):681-91.
  • [5]Eriksson P, Aine M, Sjodahl G, Staaf J, Lindgren D, Hoglund M: Detailed analysis of focal chromosome arm 1q and 6p amplifications in urothelial carcinoma reveals complex genomic events on 1q and as a possible auxiliary target on 6p. PLoS One 2013, 8(6):e67222.
  • [6]Lindgren D, Sjodahl G, Lauss M, Staaf J, Chebil G, Lovgren K, et al.: Integrated genomic and gene expression profiling identifies two major genomic circuits in urothelial carcinoma. PLoS One 2012, 7(6):e38863.
  • [7]Damrauer JS, Hoadley KA, Chism DD, Fan C, Tiganelli CJ, Wobker SE, et al.: Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer biology. Proc Natl Acad Sci U S A 2014, 111(8):3110-5.
  • [8]Kim WJ, Kim EJ, Kim SK, Kim YJ, Ha YS, Jeong P, et al.: Predictive value of progression-related gene classifier in primary non-muscle invasive bladder cancer. Mol Cancer 2010, 9:3.
  • [9]The Cancer Genome Atlas Research Network: Comprehensive molecular characterization of urothelial bladder carcinoma Nature 2014, 507(7492):315-22.
  • [10]The Cancer Genome Atlas Research Network: Comprehensive molecular portraits of human breast tumours Nature 2012, 490(7418):61-70.
  • [11]ENCODE Project Consortium: An integrated encyclopedia of DNA elements in the human genome Nature 2012, 489(7414):57-74.
  • [12]Lawrence M, Huber W, Pages H, Aboyoun P, Carlson M, Gentleman R, et al.: Software for computing and annotating genomic ranges. PLoS Comput Biol 2013, 9(8):e1003118.
  • [13]Tang Q, Chen Y, Meyer C, Geistlinger T, Lupien M, Wang Q, et al.: A comprehensive view of nuclear receptor cancer cistromes. Cancer Res 2011, 71(22):6940-7.
  • [14]Liu T, Ortiz JA, Taing L, Meyer CA, Lee B, Zhang Y, et al.: Cistrome: an integrative platform for transcriptional regulation studies. Genome Biol 2011, 12(8):R83.
  • [15]Kittler R, Zhou J, Hua S, Ma L, Liu Y, Pendleton E, et al.: A comprehensive nuclear receptor network for breast cancer cells. Cell Rep 2013, 3(2):538-51.
  • [16]Donaldson IJ, Amin S, Hensman JJ, Kutejova E, Rattray M, Lawrence N, et al.: Genome-wide occupancy links Hoxa2 to Wnt-beta-catenin signaling in mouse embryonic development. Nucleic Acids Res 2012, 40(9):3990-4001.
  • [17]Mudunuri U, Che A, Yi M, Stephens RM: bioDBnet: the biological database network. Bioinformatics 2009, 25(4):555-6.
  • [18]Veerla S, Ringner M, Hoglund M: Genome-wide transcription factor binding site/promoter databases for the analysis of gene sets and co-occurrence of transcription factor binding motifs. BMC Genomics 2010, 11:145. BioMed Central Full Text
  • [19]Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A, et al.: TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res 2006, 34(Database issue):D108-10.
  • [20]Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 2001, 98(9):5116-21.
  • [21]Neph S, Vierstra J, Stergachis AB, Reynolds AP, Haugen E, Vernot B, et al.: An expansive human regulatory lexicon encoded in transcription factor footprints. Nature 2012, 489(7414):83-90.
  • [22]Bock M, Hinley J, Schmitt C, Wahlicht T, Kramer S, Southgate J: Identification of ELF3 as an early transcriptional regulator of human urothelium. Dev Biol 2014, 386(2):321-30.
  • [23]Varley CL, Bacon EJ, Holder JC, Southgate J: FOXA1 and IRF-1 intermediary transcriptional regulators of PPARgamma-induced urothelial cytodifferentiation. Cell Death Differ 2009, 16(1):103-14.
  • [24]Wilkerson MD, Hayes DN: ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics 2010, 26(12):1572-3.
  • [25]Varga T, Czimmerer Z, Nagy L: PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochim Biophys Acta 2011, 1812(8):1007-22.
  • [26]Ni Y, Ji C, Wang B, Qiu J, Wang J, Guo X: A Novel pro-adipogenesis factor abundant in adipose tissues and over-expressed in obesity acts upstream of PPARgamma and C/EBPalpha. J Bioenerg Biomembr 2013, 45(3):219-28.
  • [27]Jaganathan S, Yue P, Paladino DC, Bogdanovic J, Huo Q, Turkson J: A functional nuclear epidermal growth factor receptor, SRC and Stat3 heteromeric complex in pancreatic cancer cells. PLoS One 2011, 6(5):e19605.
  • [28]Schlessinger J: Cell signaling by receptor tyrosine kinases. Cell 2000, 103(2):211-25.
  • [29]Prat A, Adamo B, Fan C, Peg V, Vidal M, Galvan P, et al.: Genomic analyses across six cancer types identify basal-like breast cancer as a unique molecular entity. Sci Rep 2013, 3:3544.
  • [30]Sadasivam S, Duan S, DeCaprio JA: The MuvB complex sequentially recruits B-Myb and FoxM1 to promote mitotic gene expression. Genes Dev 2012, 26(5):474-89.
  • [31]Fu Z, Malureanu L, Huang J, Wang W, Li H, van Deursen JM, et al.: Plk1-dependent phosphorylation of FoxM1 regulates a transcriptional programme required for mitotic progression. Nat Cell Biol 2008, 10(9):1076-82.
  • [32]Banaszak L, Winter N, Xu Z, Bernlohr DA, Cowan S, Jones TA: Lipid-binding proteins: a family of fatty acid and retinoid transport proteins. Adv Protein Chem 1994, 45:89-151.
  • [33]Schug TT, Berry DC, Shaw NS, Travis SN, Noy N: Opposing effects of retinoic acid on cell growth result from alternate activation of two different nuclear receptors. Cell 2007, 129(4):723-33.
  • [34]Schug TT, Berry DC, Toshkov IA, Cheng L, Nikitin AY, Noy N: Overcoming retinoic acid-resistance of mammary carcinomas by diverting retinoic acid from PPARbeta/delta to RAR. Proc Natl Acad Sci U S A 2008, 105(21):7546-51.
  • [35]Aine M, Sjodahl G, Eriksson P, Veerla S, Lindgren D, Ringner M, et al.: Integrative epigenomic analysis of differential DNA methylation in urothelial carcinoma. Genome Med 2015, 7(1):23.
  • [36]Mauney JR, Ramachandran A, Yu RN, Daley GQ, Adam RM, Estrada CR: All-trans retinoic acid directs urothelial specification of murine embryonic stem cells via GATA4/6 signaling mechanisms. PLoS One 2010, 5(7):e11513.
  • [37]Varley CL, Stahlschmidt J, Lee WC, Holder J, Diggle C, Selby PJ, et al.: Role of PPARgamma and EGFR signalling in the urothelial terminal differentiation programme. J Cell Sci 2004, 117(Pt 10):2029-36.
  • [38]Ballim RD, Mendelsohn C, Papaioannou VE, Prince S: The ulnar-mammary syndrome gene, Tbx3, is a direct target of the retinoic acid signaling pathway, which regulates its expression during mouse limb development. Mol Biol Cell 2012, 23(12):2362-72.
  • [39]Boskovic G, Niles RM: T-box binding protein type two (TBX2) is an immediate early gene target in retinoic-acid-treated B16 murine melanoma cells. Exp Cell Res 2004, 295(2):281-9.
  • [40]Kandimalla R, van Tilborg AA, Kompier LC, Stumpel DJ, Stam RW, Bangma CH, et al.: Genome-wide analysis of CpG island methylation in bladder cancer identified TBX2, TBX3, GATA2 and ZIC4 as pTa-specific prognostic markers. Eur Urol 2012, 61(6):1245-56.
  • [41]Poulsen L, Siersbaek M, Mandrup S: PPARs: fatty acid sensors controlling metabolism. Semin Cell Dev Biol 2012, 23(6):631-9.
  • [42]Strand DW, Jiang M, Murphy TA, Yi Y, Konvinse KC, Franco OE, et al.: PPARgamma isoforms differentially regulate metabolic networks to mediate mouse prostatic epithelial differentiation. Cell Death Dis 2012, 3:e361.
  • [43]Ho PL, Lay EJ, Jian W, Parra D, Chan KS: Stat3 activation in urothelial stem cells leads to direct progression to invasive bladder cancer. Cancer Res 2012, 72(13):3135-42.
  • [44]Strand DW, DeGraff DJ, Jiang M, Sameni M, Franco OE, Love HD, et al.: Deficiency in metabolic regulators PPARgamma and PTEN cooperates to drive keratinizing squamous metaplasia in novel models of human tissue regeneration. Am J Pathol 2013, 182(2):449-59.
  • [45]Varley CL, Stahlschmidt J, Smith B, Stower M, Southgate J: Activation of peroxisome proliferator-activated receptor-gamma reverses squamous metaplasia and induces transitional differentiation in normal human urothelial cells. Am J Pathol 2004, 164(5):1789-98.
  • [46]Chen X, Muller GA, Quaas M, Fischer M, Han N, Stutchbury B, et al.: The forkhead transcription factor FOXM1 controls cell cycle-dependent gene expression through an atypical chromatin binding mechanism. Mol Cell Biol 2013, 33(2):227-36.
  • [47]Carr JR, Kiefer MM, Park HJ, Li J, Wang Z, Fontanarosa J, et al.: FoxM1 regulates mammary luminal cell fate. Cell Rep 2012, 1(6):715-29.
  • [48]Gemenetzidis E, Elena-Costea D, Parkinson EK, Waseem A, Wan H, Teh MT: Induction of human epithelial stem/progenitor expansion by FOXM1. Cancer Res 2010, 70(22):9515-26.
  • [49]Raychaudhuri P, Park HJ: FoxM1: a master regulator of tumor metastasis. Cancer Res 2011, 71(13):4329-33.
  • [50]Teh MT, Gemenetzidis E, Chaplin T, Young BD, Philpott MP: Upregulation of FOXM1 induces genomic instability in human epidermal keratinocytes. Mol Cancer 2010, 9:45.
  • [51]He X, Marchionni L, Hansel DE, Yu W, Sood A, Yang J, et al.: Differentiation of a highly tumorigenic basal cell compartment in urothelial carcinoma. Stem Cells 2009, 27(7):1487-95.
  • [52]Biton A, Bernard-Pierrot I, Lou Y, Krucker C, Chapeaublanc E, Rubio-Perez C, et al.: Independent component analysis uncovers the landscape of the bladder tumor transcriptome and reveals insights into luminal and Basal subtypes. Cell Rep 2014, 9(4):1235-45.
  • [53]Choi W, Porten S, Kim S, Willis D, Plimack ER, Hoffman-Censits J, et al.: Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell 2014, 25(2):152-65.
  • [54]Bracken AP, Dietrich N, Pasini D, Hansen KH, Helin K: Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev 2006, 20(9):1123-36.
  • [55]Kashyap V, Gudas LJ, Brenet F, Funk P, Viale A, Scandura JM: Epigenomic reorganization of the clustered Hox genes in embryonic stem cells induced by retinoic acid. J Biol Chem 2011, 286(5):3250-60.
  • [56]Koster MI, Kim S, Mills AA, DeMayo FJ, Roop DR: p63 is the molecular switch for initiation of an epithelial stratification program. Genes Dev 2004, 18(2):126-31.
  • [57]Volkmer JP, Sahoo D, Chin RK, Ho PL, Tang C, Kurtova AV, et al.: Three differentiation states risk-stratify bladder cancer into distinct subtypes. Proc Natl Acad Sci U S A 2012, 109(6):2078-83.
  • [58]Bernardo GM, Bebek G, Ginther CL, Sizemore ST, Lozada KL, Miedler JD, et al.: FOXA1 represses the molecular phenotype of basal breast cancer cells. Oncogene 2013, 32(5):554-63.
  • [59]Kouros-Mehr H, Slorach EM, Sternlicht MD, Werb Z: GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell 2006, 127(5):1041-55.
  文献评价指标  
  下载次数:22次 浏览次数:15次