期刊论文详细信息
BMC Structural Biology
A simple method for finding a protein’s ligand-binding pockets
Jack A Tuszynski1  Seyed Majid Saberi Fathi2 
[1] Department of Physics, University of Alberta, Edmonton, Alberta, Canada;Department of Physics, Ferdowsi University of Mashhad, Mashhad, Iran
关键词: Computational methods;    Ligand-binding pockets;    Protein structure;   
Others  :  1090799
DOI  :  10.1186/1472-6807-14-18
 received in 2014-01-09, accepted in 2014-07-11,  发布年份 2014
PDF
【 摘 要 】

Background

This paper provides a simple and rapid method for a protein-clustering strategy. The basic idea implemented here is to use computational geometry methods to predict and characterize ligand-binding pockets of a given protein structure. In addition to geometrical characteristics of the protein structure, we consider some simple biochemical properties that help recognize the best candidates for pockets in a protein’s active site.

Results

Our results are shown to produce good agreement with known empirical results.

Conclusions

The method presented in this paper is a low-cost rapid computational method that could be used to classify proteins and other biomolecules, and furthermore could be useful in reducing the cost and time of drug discovery.

【 授权许可】

   
2014 Saberi Fathi and Tuszynski; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128163427535.pdf 1287KB PDF download
Figure 9. 21KB Image download
Figure 8. 21KB Image download
Figure 7. 20KB Image download
Figure 6. 60KB Image download
Figure 5. 72KB Image download
Figure 4. 39KB Image download
Figure 3. 96KB Image download
Figure 2. 58KB Image download
Figure 1. 57KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Polgár L: The catalytic triad of serine peptidases. Cell Mol Life Sci CMLS 2005, 62:2161-2172.
  • [2]Mooney SD, Liang MH-P, DeConde R, Altman RB: Structural characterization of proteins using residue environments. Proteins 2005, 61:741-747.
  • [3]Shulman-Peleg A, Nussinov R, Wolfson HJ: Recognition of functional sites in protein structures. J Mol Biol 2004, 339:607-633.
  • [4]Fetrow JS, Godzik A, Skolnick J: Functional analysis of the Escherichia coli genome using the sequence-to-structure-to-function paradigm: identification of proteins exhibiting the glutaredoxin/thioredoxin disulfide oxidoreductase activity. J Mol Biol 1998, 282:703-711.
  • [5]Wallace AC, Borkakoti N, Thornton JM: TESS: a geometric hashing algorithm for deriving 3D coordinate templates for searching structural databases. Application to enzyme active sites. Protein Sci Publ Protein Soc 1997, 6:2308-2323.
  • [6]Connolly ML: Solvent-accessible surfaces of proteins and nucleic acids. Science 1983, 221:709-713.
  • [7]Goldman BB, Wipke WT: QSD quadratic shape descriptors. 2. Molecular docking using quadratic shape descriptors (QSDock). Proteins 2000, 38:79-94.
  • [8]Duncan BS, Olson AJ: Approximation and characterization of molecular surfaces. Biopolymers 1993, 33:219-229.
  • [9]Exner TE, Keil M, Brickmann J: Pattern recognition strategies for molecular surfaces. I. Pattern generation using fuzzy set theory. J Comput Chem 2002, 23:1176-1187.
  • [10]Kinoshita K, Nakamura H: Identification of protein biochemical functions by similarity search using the molecular surface database eF-site. Protein Sci Publ Protein Soc 2003, 12:1589-1595.
  • [11]Rupp B, Wang J: Predictive models for protein crystallization. Methods San Diego Calif 2004, 34:390-407.
  • [12]Arnold K, Bordoli L, Kopp J, Schwede T: The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinforma Oxf Engl 2006, 22:195-201.
  • [13]An J, Totrov M, Abagyan R: Comprehensive identification of “druggable” protein ligand binding sites. Genome Inform Int Conf Genome Inform 2004, 15:31-41.
  • [14]Huang B, Schroeder M: LIGSITEcsc: predicting ligand binding sites using the connolly surface and degree of conservation. BMC Struct Biol 2006, 6:19.
  • [15]Laskowski RA: SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions. J Mol Graph 1995, 13:323-330. 307–308
  • [16]Laurie ATR, Jackson RM: Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites. Bioinforma Oxf Engl 2005, 21:1908-1916.
  • [17]Liang J, Edelsbrunner H, Woodward C: Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design. Protein Sci Publ Protein Soc 1998, 7:1884-1897.
  • [18]Peters KP, Fauck J, Frömmel C: The automatic search for ligand binding sites in proteins of known three-dimensional structure using only geometric criteria. J Mol Biol 1996, 256:201-213.
  • [19]Brady GP Jr, Stouten PF: Fast prediction and visualization of protein binding pockets with PASS. J Comput Aided Mol Des 2000, 14:383-401.
  • [20]Li B, Turuvekere S, Agrawal M, La D, Ramani K, Kihara D: Characterization of local geometry of protein surfaces with the visibility criterion. Proteins 2008, 71:670-683.
  • [21]Hendlich M, Rippmann F, Barnickel G: LIGSITE: automatic and efficient detection of potential small molecule-binding sites in proteins. J Mol Graph Model 1997, 15:359-363.
  • [22]Levitt DG, Banaszak LJ: POCKET: a computer graphics method for identifying and displaying protein cavities and their surrounding amino acids. J Mol Graph 1992, 10:229-234.
  • [23]An J, Totrov M, Abagyan R: Pocketome via comprehensive identification and classification of ligand binding envelopes. Mol Cell Proteomics MCP 2005, 4:752-761.
  • [24]Coleman RG, Sharp KA: Travel depth, a new shape descriptor for macromolecules: application to ligand binding. J Mol Biol 2006, 362:441-458.
  • [25]Kleywegt GJ, Jones TA: Detection, delineation, measurement and display of cavities in macromolecular structures. Acta Crystallogr D Biol Crystallogr 1994, 50(Pt 2):178-185.
  • [26]Ho CM, Marshall GR: Cavity search: an algorithm for the isolation and display of cavity-like binding regions. J Comput Aided Mol Des 1990, 4:337-354.
  • [27]Dennis S, Kortvelyesi T, Vajda S: Computational mapping identifies the binding sites of organic solvents on proteins. Proc Natl Acad Sci U S A 2002, 99:4290-4295.
  • [28]Kortvelyesi T, Silberstein M, Dennis S, Vajda S: Improved mapping of protein binding sites. J Comput Aided Mol Des 2003, 17:173-186.
  • [29]Ruppert J, Welch W, Jain AN: Automatic identification and representation of protein binding sites for molecular docking. Protein Sci Publ Protein Soc 1997, 6:524-533.
  • [30]Verdonk ML, Cole JC, Watson P, Gillet V, Willett P: SuperStar: improved knowledge-based interaction fields for protein binding sites. J Mol Biol 2001, 307:841-859.
  • [31]Bliznyuk AA, Gready JE: Simple method for locating possible ligand binding sites on protein surfaces. J Comput Chem 1999, 20:983-988.
  • [32]Campbell SJ, Gold ND, Jackson RM, Westhead DR: Ligand binding: functional site location, similarity and docking. Curr Opin Struct Biol 2003, 13:389-395.
  • [33]Glick M, Robinson DD, Grant GH, Richards WG: Identification of ligand binding sites on proteins using a multi-scale approach. J Am Chem Soc 2002, 124:2337-2344.
  • [34]Sotriffer C, Klebe G: Identification and mapping of small-molecule binding sites in proteins: computational tools for structure-based drug design. Farm Soc Chim Ital 1989 2002, 57:243-251.
  • [35]Andricopulo AD, Salum LB, Abraham DJ: Structure-based drug design strategies in medicinal chemistry. Curr Top Med Chem 2009, 9:771-790.
  • [36]Waszkowycz B, Clark DE, Gancia E: Outstanding challenges in protein-ligand docking and structure-based virtual screening. Wiley Interdiscip Rev Comput Mol Sci 2011, 1:229-259.
  • [37]Cavasotto CN, Orry AJW: Ligand docking and structure-based virtual screening in drug discovery. Curr Top Med Chem 2007, 7:1006-1014.
  • [38]Des Jarlais RL, Cummings MD, Gibbs AC: Virtual docking: how are we doing and how can we improve? Front Drug Des Discov Struct-Based Drug Des 21st Century 2007, 3:81-103.
  • [39]Moitessier N, Englebienne P, Lee D, Lawandi J, Corbeil CR: Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go. Br J Pharmacol 2008, 153(Suppl 1):S7-S26.
  • [40]Kontoyianni M, Madhav P, Suchanek E, Seibel W: Theoretical and practical considerations in virtual screening: a beaten field? Curr Med Chem 2008, 15:107-116.
  • [41]Tuccinardi T: Docking-based virtual screening: recent developments. Comb Chem High Throughput Screen 2009, 12:303-314.
  • [42]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215:403-410.
  • [43]Pearson WR: Rapid and sensitive sequence comparison with FASTP and FASTA. Methods Enzymol 1990, 183:63-98.
  • [44]Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389-3402.
  • [45]Söding J, Biegert A, Lupas AN: The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 2005, 33(Web Server issue):W244-W248.
  • [46]Zhang Y: Template-based modeling and free modeling by I-TASSER in CASP7. Proteins 2007, 69(Suppl 8):108-117.
  • [47]Roy A, Kucukural A, Zhang Y: I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 2010, 5:725-738.
  • [48]Liu TW, Tang G, Capriotti E: Comparative modeling: the state of the art and protein drug target structure prediction. Comb Chem High Throughput Screen 2011, 14:532-547.
  • [49]Nelson DL, Cox MM, Lehninger AL: Principles of Biochemistry. New York: Freeman; 2004.
  • [50]Murray RK: Harper’s Illustrated Biochemistry. New York: McGraw-Hill; 2003.
  • [51]Markley JL, Bax A, Arata Y, Hilbers CW, Kaptein R, Sykes BD, Wright PE, Wüthrich K: Recommendations for the presentation of NMR structures of proteins and nucleic acids (IUPAC Recommendations 1998). Pure Appl Chem 1998, 70:117-142.
  • [52]Atomic coordinate entry format version 3.3 http://www.wwpdb.org/documentation/format33/v3.3.html webcite
  文献评价指标  
  下载次数:120次 浏览次数:48次