期刊论文详细信息
BMC Microbiology
Highly specific fiber optic immunosensor coupled with immunomagnetic separation for detectionof low levels of Listeria monocytogenes and L. ivanovii
Arun K Bhunia3  José AG Aleixo2  Wladimir P da Silva1  Ângela N Moreira2  Fabricio R Conceição2  Neida L Conrad2  Marcelo Mendonça3 
[1] Laboratório de Microbiologia de Alimentos, Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, 96010-900, Pelotas, RS, Brazil;Laboratório de Imunologia Aplicada, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, 96010-900 Pelotas, RS, Brazil;Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA
关键词: Biosensor;    Detection;    qPCR;    Light scattering sensor;    Fiber optic sensor;    Immunomagnetic separation;    Monoclonal antibody;    Internalin A;    Listeria monocytogenes;   
Others  :  1144945
DOI  :  10.1186/1471-2180-12-275
 received in 2012-02-23, accepted in 2012-10-16,  发布年份 2012
PDF
【 摘 要 】

Background

Immunomagnetic separation (IMS) and immunoassays are widely used for pathogen detection. However, novel technology platforms with highly selective antibodies are essential to improve detection sensitivity, specificity and performance. In this study, monoclonal antibodies (MAbs) against Internalin A (InlA) and p30 were generated and used on paramagnetic beads of varying diameters for concentration, as well as on fiber-optic sensor for detection.

Results

Anti-InlA MAb-2D12 (IgG2a subclass) was specific for Listeria monocytogenes and L. ivanovii, and p30-specific MAb-3F8 (IgM) was specific for the genus Listeria. At all bacterial concentrations (103–108 CFU/mL) tested in the IMS assay; the 1-μm diameter MyOne beads had significantly higher capture efficiency (P < 0.05) than the 2.8-μm diameter M-280 beads with both antibodies. The highest capture efficiency for MyOne-2D12 (49.2% for 105 CFU/mL) was significantly higher (P < 0.05) than that of MyOne-3F8 (16.6 %) and Dynabeads anti-Listeria antibody (9 %). Furthermore, capture efficiency for MyOne-2D12 was highly specific for L. monocytogenes and L. ivanovii. Subsequently, we captured L. monocytogenes by MyOne-2D12 and MyOne-3F8 from hotdogs inoculated with mono- or co-cultures of L. monocytogenes and L. innocua (10–40 CFU/g), enriched for 18 h and detected by fiber-optic sensor and confirmed by plating, light-scattering, and qPCR assays. The detection limit for L. monocytogenes and L. ivanovii by the fiber-optic immunosensor was 3 × 102 CFU/mL using MAb-2D12 as capture and reporter antibody. Selective media plating, light-scattering, and qPCR assays confirmed the IMS and fiber-optic results.

Conclusions

IMS coupled with a fiber-optic sensor using anti-InlA MAb is highly specific for L. monocytogenes and L. ivanovii and enabled detection of these pathogens at low levels from buffer or food.

【 授权许可】

   
2012 Mendonça et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150331054611867.pdf 1105KB PDF download
Figure 8. 37KB Image download
Figure 7. 69KB Image download
Figure 6. 29KB Image download
Figure 5. 62KB Image download
Figure 4. 40KB Image download
Figure 3. 79KB Image download
Figure 2. 100KB Image download
Figure 1. 99KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Vazquez-Boland JA, Kuhn M, Berche P, Chakraborty T, Dominguez-Bernal G, Goebel W, Gonzalez-Zorn B, Wehland J, Kreft J: Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 2001, 14(3):584-640.
  • [2]Azevedo I, Regalo M, Mena C, Almeida G, Carneiro L, Teixeira P, Hogg T, Gibbs P: Incidence of Listeria spp. in domestic refrigerators in Portugal. Food Control 2003, 16(2):121-124.
  • [3]von Laer AE, Lima ASL, Trindade PS, Andriguetto C, Destro MT, Silva WP: Characterization of Listeria monocytogenes isolated from a fresh mixed sausage processing line in Pelotas-RS by PFGE. Braz J Microbiol 2009, 40:574-582.
  • [4]Delgado da Silva MC, Destro MT, Hofer E, Tibana A: Characterization and evaluation of some virulence markers of Listeria monocytogenes strains isolated from Brazilian cheeses using molecular, biochemical and serotyping techniques. Int J Food Microbiol 2001, 63(3):275-280.
  • [5]Pintado CM, Grant KA, Halford-Maw R, Hampton MD, Ferreira MA, McLauchlin J: Association between a case study of asymptomatic ovine listerial mastitis and the contamination of soft cheese and cheese processing environment with Listeria monocytogenes in Portugal. Foodborne Pathog Dis 2009, 6(5):569-575.
  • [6]Olsen SJ, Patrick M, Hunter SB, Reddy V, Kornstein L, MacKenzie WR, Lane K, Bidol S, Stoltman GA, Frye DM, et al.: Multistate outbreak of Listeria monocytogenes infection linked to delicatessen turkey meat. Clin Infect Dis 2005, 40(7):962-967.
  • [7]Miya S, Takahashi H, Ishikawa T, Fujii T, Kimura B: Risk of Listeria monocytogenes contamination of raw ready-to-eat seafood products available at retail outlets in Japan. Appl Environ Microbiol 2010, 76(10):3383-3386.
  • [8]CDC: Multistate outbreak of Listeriosis associated with Jensen Farms cantaloupe - United States, August-September 2011. MMWR Morb Mortal Wkly Rep 2011, 60(39):1357-1358.
  • [9]Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM: Foodborne illness acquired in the United States–major pathogens. Emerg Infect Dis 2011, 17(1):7-15.
  • [10]FAO/WHO: Food and Agriculture Organization World Health Organization. Risk assessment of Listeria monocytogenesin ready to eat foods-Technical report. 2004, 1-267. vol.5;
  • [11]Graves LM, Helsel LO, Steigerwalt AG, Morey RE, Daneshvar MI, Roof SE, Orsi RH, Fortes ED, Milillo SR, den Bakker HC, et al.: Listeria marthii sp. nov., isolated from the natural environment, Finger Lakes National Forest. Int J Syst Evol Microbiol 2010, 60(Pt 6):1280-1288.
  • [12]Leclercq A, Clermont D, Bizet C, Grimont PA, Le Fleche-Mateos A, Roche SM, Buchrieser C, Cadet-Daniel V, Le MA, Lecuit M, et al.: Listeria rocourtiae sp. nov. Int J Syst Evol Microbiol 2010, 60(Pt 9):2210-2214.
  • [13]Guillet C, Join-Lambert O, Le MA, Leclercq A, Mechai F, Mamzer-Bruneel MF, Bielecka MK, Scortti M, Disson O, Berche P, et al.: Human listeriosis caused by Listeria ivanovii. Emerg Infect Dis 2010, 16(1):136-138.
  • [14]Banada PP, Bhunia AK: Antibodies and immunoassays for detection of bacterial pathogens. In Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems. Edited by Zourob M, Elwary S, Turner A. Manchester: Cambridge University; 2008:567-602.
  • [15]Bierne H, Cossart P: Listeria monocytogenes surface proteins: from genome predictions to function. Microbiol Mol Biol Rev 2007, 71(2):377-397.
  • [16]O'Connor L, O'Leary M, Leonard N, Godinho M, O'Reilly C, Coffey L, Egan J, O'Mahony R: The characterization of Listeria spp. isolated from food products and the food-processing environment. Lett Appl Microbiol 2010, 51(5):490-498.
  • [17]Oravcova K, Trncikova T, Kuchta T, Kaclikova E: Limitation in the detection of Listeria monocytogenes in food in the presence of competing Listeria innocua. J Appl Microbiol 2008, 104(2):429-437.
  • [18]Besse NG, Barre L, Buhariwalla C, Vignaud ML, Khamissi E, Decourseulles E, Nirsimloo M, Chelly M, Kalmokoff M: The overgrowth of Listeria monocytogenes by other Listeria spp. in food samples undergoing enrichment cultivation has a nutritional basis. Int J Food Microbiol 2010, 136(3):345-351.
  • [19]Koo OK, Aroonnual A, Bhunia AK: Human heat-shock protein 60 receptor-coated paramagnetic beads show improved capture of Listeria monocytogenes in the presence of other Listeria in food. J Appl Microbiol 2011, 111(1):93-104.
  • [20]Meldrum RJ, Ellis PW, Mannion PT, Halstead D, Garside J: Prevalence of Listeria monocytogenes in ready-to-eat foods sampled from the point of sale in Wales, United Kingdom. J Food Prot 2010, 73(8):1515-1518.
  • [21]Carvalheira A, Eus bio C, Silva J, Gibbs P, Teixeira P: Influence of L. innocua on the growth of L. monocytogenes. Food Control 2010, 21(11):1492-1406.
  • [22]Byrne B, Stack E, Gilmartin N, Kennedy RO: Antibody-based sensors: Principles, problems and potential for detection of pathogens and associated toxins. Sensors 2009, 9(6):4407-4445.
  • [23]Bhunia AK, Johnson MG: Monoclonal antibody specific for Listeria monocytogenes associated with a 66-kilodalton cell surface antigen. Appl Environ Microbiol 1992, 58(6):1924-1929.
  • [24]Bhunia AK, Ball PH, Fuad AT, Kurz BW, Emerson JW, Johnson MG: Development and characterization of a monoclonal antibody specific for Listeria monocytogenes and Listeria innocua. Infect Immun 1991, 59(9):3176-3184.
  • [25]Kim SH, Park MK, Kim JY, Chuong PD, Lee YS, Yoon BS, Hwang KK, Lim YK: Development of a sandwich ELISA for the detection of Listeria spp. using specific flagella antibodies. J Vet Sci 2005, 6(1):41-46.
  • [26]Heo SA, Nannapaneni R, Story RP, Johnson MG: Characterization of new hybridoma clones producing monoclonal antibodies reactive against both live and heat-killed Listeria monocytogenes. J Food Sci 2007, 72(1):M008-M015.
  • [27]Lin M, Armstrong S, Ronholm J, Dan H, Auclair ME, Zhang Z, Cao X: Screening and characterization of monoclonal antibodies to the surface antigens of Listeria monocytogenes serotype 4b. J Appl Microbiol 2009, 106(5):1705-1714.
  • [28]Paoli GC, Chen CY, Brewster JD: Single-chain Fv antibody with specificity for Listeria monocytogenes. J Immunol Methods 2004, 289(1–2):147-155.
  • [29]Lathrop AA, Banada PP, Bhunia AK: Differential expression of InlB and ActA in Listeria monocytogenes in selective and nonselective enrichment broths. J Appl Microbiol 2008, 104:627-639.
  • [30]Nannapaneni R, Story R, Bhunia AK, Johnson MG: Unstable expression and thermal instability of a species-specific cell surface epitope associated with a 66-kilodalton antigen recognized by monoclonal antibody EM-7 G1 within serotypes of Listeria monocytogenes grown in nonselective and selective broths. Appl Environ Microbiol 1998, 64(8):3070-3074.
  • [31]Bhunia AK: Biosensors and bio-based methods for the separation and detection of foodborne pathogens. Adv Food Nutr Res 2008, 54:1-44.
  • [32]Brehm-Stecher B, Young C, Jaykus L-A, Tortorello ML: Sample preparation: The forgotten beginning. J Food Protect 2009, 72:1774-1789.
  • [33]Gasanov U, Hughes D, Hansbro PM: Methods for the isolation and identification of Listeria spp. and Listeria monocytogenes: a review. FEMS Microbiol Rev 2005, 29(5):851-875.
  • [34]Tu SI, Reed S, Gehring A, He YP: Simultaneous detection of Escherichia coli O157:H7 and Salmonella Typhimurium: The use of magnetic beads conjugated with multiple capture antibodies. Food Anal Methods 2011, 4(3):357-364.
  • [35]Dwivedi HP, Jaykus L-A: Detection of pathogens in foods: the current state-of-the-art and future directions. Cri Rev Microbiol 2011, 37(1):40-63.
  • [36]Velusamy V, Arshak K, Korostynska O, Oliwa K, Adley C: An overview of foodborne pathogen detection: In the perspective of biosensors. Biotechnol Adv 2010, 28(2):232-254.
  • [37]Wadud S, Leon-Velarde CG, Larson N, Odumeru JA: Evaluation of immunomagnetic separation in combination with ALOA Listeria chromogenic agar for the isolation and identification of Listeria monocytogenes in ready-to-eat foods. J Microbiol Methods 2010, 81(2):153-159.
  • [38]Bilir Ormanci FS, Erol I, Ayaz ND, Iseri O, Sariguzel D: Immunomagnetic separation and PCR detection of Listeria monocytogenes in turkey meat and antibiotic resistance of the isolates. Br Poult Sci 2008, 49(5):560-565.
  • [39]Yang H, Qu L, Wimbrow AN, Jiang X, Sun Y: Rapid detection of Listeria monocytogenes by nanoparticle-based immunomagnetic separation and real-time PCR. Int J Food Microbiol 2007, 118(2):132-138.
  • [40]Hibi K, Abe A, Ohashi E, Mitsubayashi K, Ushio H, Hayashi T, Ren H, Endo H: Combination of immunomagnetic separation with flow cytometry for detection of Listeria monocytogenes. Anal Chim Acta 2006, 573–574:158-163.
  • [41]Gray KM, Bhunia AK: Specific detection of cytopathogenic Listeria monocytogenes using a two-step method of immunoseparation and cytotoxicity analysis. J Microbiol Methods 2005, 60(2):259-268.
  • [42]Gehring A, Tu SI: High-throughput biosensors for multiplexed food-borne pathogen detection. Annu Rev Anal Chem 2011, 4:151-172.
  • [43]Koo OK, Liu Y, Shuaib S, Bhattacharya S, Ladisch MR, Bashir R, Bhunia AK: Targeted capture of pathogenic bacteria using a mammalian cell receptor coupled with dielectrophoresis on a biochip. Anal Chem 2009, 81(8):3094-3101.
  • [44]Leung A, Shankar PM, Mutharasan R: A review of fiber-optic biosensors. Sens Actuat B: Chem 2007, 125(2):688-703.
  • [45]Taitt CR, Anderson GP, Ligler FS: Evanescent wave fluorescence biosensors. Biosens Bioelectron 2005, 20(12):2470-2487.
  • [46]Geng T, Morgan MT, Bhunia AK: Detection of low levels of Listeria monocytogenes cells by using a fiber-optic immunosensor. Appl Environ Microbiol 2004, 70(10):6138-6146.
  • [47]Lim DV, Simpson JM, Kearns EA, Kramer MF: Current and developing technologies for monitoring agents of bioterrorism and biowarfare. Clin Microbiol Rev 2005, 18(4):583-607.
  • [48]Ohk SH, Koo OK, Sen T, Yamamoto CM, Bhunia AK: Antibody-aptamer functionalized fibre-optic biosensor for specific detection of Listeria monocytogenes from food. J Appl Microbiol 2010, 109(3):808-817.
  • [49]Olier M, Pierre F, Rousseaux S, Lemaitre JP, Rousset A, Piveteau P, Guzzo J: Expression of truncated Internalin A is involved in impaired internalization of some Listeria monocytogenes isolates carried asymptomatically by humans. Infect Immun 2003, 71(3):1217-1224.
  • [50]Kim H, Bhunia AK: SEL, a selective enrichment broth for simultaneous growth of Salmonella enterica, Escherichia coli O157:H7, and Listeria monocytogenes. Appl Environ Microbiol 2008, 74(15):4853-4866.
  • [51]Walcher G, Stessl B, Wagner M, Eichenseher F, Loessner MJ, Hein I: Evaluation of paramagnetic beads coated with recombinant Listeria phage endolysine derived cell-wall-binding domain proteins for separation of Listeria monocytogenes from raw milk in combination with culture-based and real-time polymerase chain reaction based quantification. Foodborne Pathog Dis 2010, 7(9):1019-1024.
  • [52]Paoli GC, Kleina LG, Brewster JD: Development of Listeria monocytogenes-specific immunomagnetic beads using a single-chain antibody fragment. Foodborne Pathog Dis 2007, 4(1):74-83.
  • [53]Tully E, Hearty S, Leonard P, O'Kennedy R: The development of rapid fluorescence-based immunoassays, using quantum dot-labeled antibodies for the detection of Listeria monocytogenes cell surface proteins. Int J Biol Macromol 2006, 39(1–3):127-134.
  • [54]Bueno VF, Banerjee P, Banada PP, de Jose MA, Lemes-Marques EG, Bhunia AK: Characterization of Listeria monocytogenes isolates of food and human origins from Brazil using molecular typing procedures and in vitro cell culture assays. Int J Environ Health Res 2010, 20(1):43-59.
  • [55]Jacquet C, Doumith M, Gordon JI, Martin PM, Cossart P, Lecuit M: A molecular marker for evaluating the pathogenic potential of foodborne Listeria monocytogenes. J Infect Dis 2004, 189(11):2094-2100.
  • [56]Chen Y, Ross WH, Whiting RC, Van SA, Nightingale KK, Wiedmann M, Scott VN: Variation in Listeria monocytogenes dose responses in relation to subtypes encoding a full-length or truncated internalin A. Appl Environ Microbiol 2011, 77(4):1171-1180.
  • [57]Varshney M, Yang LJ, Su XL, Li YB: Magnetic nanoparticle-antibody conjugates for the separation of Escherichia coli O157:H7 in ground beef. J Food Protect 2005, 68(9):1804-1811.
  • [58]Foddai A, Elliott CT, Grant IR: Maximizing capture efficiency and specificity of magnetic separation for Mycobacterium avium subsp. paratuberculosis cells. Appl Environ Microbiol 2010, 76(22):7550-7558.
  • [59]Snapir YM, Vaisbein E, Nassar F: Low virulence but potentially fatal outcome - Listeria ivanovii. Eur J Intern Med 2006, 17(4):286-287.
  • [60]Hearty S, Leonard P, Quinn J, O'Kennedy R: Production, characterisation and potential application of a novel monoclonal antibody for rapid identification of virulent Listeria monocytogenes. J Microbiol Methods 2006, 66(2):294-312.
  • [61]Banada PP, Huff K, Bae E, Rajwa B, Aroonnual A, Bayraktar B, Adil A, Robinson JP, Hirleman ED, Bhunia AK: Label-free detection of multiple bacterial pathogens using light-scattering sensor. Biosens Bioelectron 2009, 24(6):1685-1692.
  • [62]Duodu S, Mehmeti I, Holst-Jensen A, Loncarevic S: Improved sample preparation for real-time PCR detection of in hot-smoked salmon using filtering and immunomagnetic separation techniques. Food Anal Methods 2009, 2:23-29.
  • [63]Lindback T, Rottenberg ME, Roche SM, Rorvik LM: The ability to enter into an avirulent viable but non-culturable (VBNC) form is widespread among Listeria monocytogenes isolates from salmon, patients and environment. Vet Res 2010, 41(1):8.
  • [64]Ramos CRR, Abreu PAE, Nascimento A, Ho PL: A high-copy T7 Escherichia coli expression vector for the production of recombinant proteins with a minimal N-terminal his-tagged fusion peptide. Brazilian J Med Biol Res 2004, 37(8):1103-1109.
  • [65]Harlow E, Lane D: Antibodies: A Laboratory Manual. NY: Cold Spring Harbor; 1988.
  • [66]Jonquieres R, Bierne H, Fiedler F, Gounon P, Cossart P: Interaction between the protein InlB of Listeria monocytogenes and lipoteichoic acid: a novel mechanism of protein association at the surface of gram-positive bacteria. Mol Microbiol 1999, 34(5):902-914.
  • [67]Nogva HK, Rudi K, Naterstad K, Holck A, Lillehaug D: Application of 5'-nuclease PCR for quantitative detection of Listeria monocytogenes in pure cultures, water, skim milk, and unpasteurized whole milk. Appl Environ Microbiol 2000, 66(10):4266-4271.
  文献评价指标  
  下载次数:109次 浏览次数:20次