期刊论文详细信息
BMC Structural Biology
Are different stoichiometries feasible for complexes between lymphotoxin-alpha and tumor necrosis factor receptor 1?
Johannes Kästner1  Nahren Manuel Mascarenhas1 
[1] Computational Biochemistry Group, Institute of Theoretical Chemistry, Pfaffenwaldring 55, University of Stuttgart, Stuttgart, 70569, Germany
关键词: Tumor necrosis factor (TNF);    Receptor;    MM/PBSA;    Lymphotoxin;    Elastic network model (ENM);   
Others  :  1092334
DOI  :  10.1186/1472-6807-12-8
 received in 2011-08-26, accepted in 2012-05-08,  发布年份 2012
PDF
【 摘 要 】

Background

Tumor necrosis factors, TNF and lymphotoxin-α (LT), are cytokines that bind to two receptors, TNFR1 and TNFR2 (TNF-receptor 1 and 2) to trigger their signaling cascades. The exact mechanism of ligand-induced receptor activation is still unclear. It is generally assumed that three receptors bind to the homotrimeric ligand to trigger a signaling event. Recent evidence, though, has raised doubts if the ligand:receptor stoichiometry should indeed be 3:3 for ligand-induced cellular response. We used molecular dynamics simulations, elastic network models, as well as MM/PBSA to analyze this question.

Results

Applying MM/PBSA methodology to different stoichiometric complexes of human LT-(TNFR1)n=1,2,3 the free energy of binding in these complexes has been estimated by single-trajectory and separate-trajectory methods. Simulation studies rationalized the favorable binding energy in the LT-(TNFR1)1 complex, as evaluated from single-trajectory analysis to be an outcome of the interaction of cysteine-rich domain 4 (CRD4) and the ligand. Elastic network models (ENMs) help to associate the difference in the global fluctuation of the receptors in these complexes. Functionally relevant transformation associated with these complexes reveal the difference in the dynamics of the receptor when free and in complex with LT.

Conclusions

MM/PBSA predicts complexes with a ligand-receptor molar ratio of 3:1 and 3:2 to be energetically favorable. The high affinity associated with LT-(TNFR1)1 is due to the interaction between the CRD4 domain with LT. The global dynamics ascertained from ENMs have highlighted the differential dynamics of the receptor in different states.

【 授权许可】

   
2012 Mascarenhas and Kästner; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128182624662.pdf 2936KB PDF download
Figure 12. 72KB Image download
Figure 11. 120KB Image download
Figure 10. 65KB Image download
Figure 9. 69KB Image download
Figure 8. 101KB Image download
Figure 7. 57KB Image download
Figure 6. 74KB Image download
Figure 5. 106KB Image download
Figure 4. 72KB Image download
Figure 3. 69KB Image download
Figure 2. 85KB Image download
Figure 1. 106KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

【 参考文献 】
  • [1]Aggarwal BB: Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 2003, 3:745-756.
  • [2]Wajant H, Pfizenmaier K, Scheurich P: Tumor necrosis factor signaling. Cell Death Differ 2003, 10:45-65.
  • [3]Adams AB, Larsen CP, Pearson TC, Newell KA: The role of TNF receptor and TNF superfamily molecules in organ transplantation. Am J Transplant 2002, 2:12-18.
  • [4]Flood J: Tumor necrosis factor inhibitors in the treatment of chronic inflammatory diseases. A review of immunogenicity and potential implications. Manag Care 2009, 18:1-5.
  • [5]Holtmann MH, Neurath MF: Differential TNF-signaling in chronic inflammatory disorders. Curr Mol Med 2004, 4:439-444.
  • [6]Bolger AP, Anker SD: Tumour necrosis factor in chronic heart failure: a peripheral view on pathogenesis, clinical manifestations and therapeutic implications. Drugs 2000, 60:1245-1257.
  • [7]Grewal IS: Overview of TNF superfamily: a chest full of potential therapeutic targets. Adv Exp Med Biol 2009, 647:1-7.
  • [8]Tartaglia LA, Weber RF, Figari IS, Reynolds C, Palladino MA, Goeddel DV: The two different receptors for tumor necrosis factor mediate distinct cellular responses. Proc Natl Acad Sci U S A 1991, 88:9292-9296.
  • [9]Milatovich A, Song K, Heller RA, Francke U: Tumor necrosis factor receptor genes, TNFR1 and TNFR2, on human chromosomes 12 and 1. Somat Cell Mol Genet 1991, 17:519-523.
  • [10]Dembic Z, Loetscher H, Gubler U, Pan YC, Lahm HW, Gentz R, Brockhaus M, Lesslauer W: Two human TNF receptors have similar extracellular, but distinct intracellular, domain sequences. Cytokine 1990, 2:231-237.
  • [11]Eck MJ, Ultsch M, Rinderknecht E, de Vos AM, Sprang SR: The structure of human lymphotoxin (tumor necrosis factor-beta) at 1.9-A resolution. J Biol Chem 1992, 267:2119-2122.
  • [12]Banner DW, D’Arcy A, Janes W, Gentz R, Schoenfeld HJ, Broger C, Loetscher H, Lesslauer W: Crystal structure of the soluble human 55 kd TNF receptor-human TNF beta complex: implications for TNF receptor activation. Cell 1993, 73:431-445.
  • [13]Naismith JH, Devine TQ, Brandhuber BJ, Sprang SR: Crystallographic evidence for dimerization of unliganded tumor necrosis factor receptor. J Biol Chem 1995, 270:13303-13307.
  • [14]Mukai Y, Nakamura T, Yoshikawa M, Yoshioka Y, Tsunoda S-ichi, Nakagawa S, Yamagata Y, Tsutsumi Y: Solution of the structure of the TNF-TNFR2 complex. Sci Signal 2010, 3:ra83.
  • [15]Tartaglia LA, Ayres TM, Wong GH, Goeddel DV: A novel domain within the 55 kd TNF receptor signals cell death. Cell 1993, 74:845-853.
  • [16]Aspalter RM, Eibl MM, Wolf HM: Regulation of TCR-mediated T cell activation by TNF-RII. J Leukoc Biol 2003, 74:572-582.
  • [17]Grell M, Douni E, Wajant H, Löhden M, Clauss M, Maxeiner B, Georgopoulos S, Lesslauer W, Kollias G, Pfizenmaier K, Scheurich P: The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell 1995, 83:793-802.
  • [18]Hehlgans T, Pfeffer K: The intriguing biology of the tumour necrosis factor/tumour necrosis factor receptor superfamily: players, rules and the games. Immunology 2005, 115:1-20.
  • [19]Bendele A, McComb J, Gould T, McAbee T, Sennello G, Chlipala E, Guy M: Animal models of arthritis: relevance to human disease. Toxicol Pathol 1999, 27:134-142.
  • [20]Faustman D, Davis M: TNF receptor 2 pathway: drug target for autoimmune diseases. Nat Rev Drug Discov 2010, 9:482-493.
  • [21]Deng G-M: Tumor necrosis factor receptor pre-ligand assembly domain is an important therapeutic target in inflammatory arthritis. BioDrugs 2007, 21:23-29.
  • [22]Licastro F, Chiappelli M, Ianni M, Porcellini E: Tumor necrosis factor-alpha antagonists: differential clinical effects by different biotechnological molecules. Int J Immunopathol Pharmacol 2009, 22:567-572.
  • [23]Caramaschi P, Biasi D, Colombatti M, Pieropan S, Martinelli N, Carletto A, Volpe A, Pacor LM, Bambara LM: Anti-TNFalpha therapy in rheumatoid arthritis and autoimmunity. Rheumatol Int 2006, 26:209-214.
  • [24]Idriss HT, Naismith JH: TNF alpha and the TNF receptor superfamily: structure-function relationship(s). Microsc Res Tech 2000, 50:184-195.
  • [25]Chan FK, Chun HJ, Zheng L, Siegel RM, Bui KL, Lenardo MJ: A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science 2000, 288:2351-2354.
  • [26]Branschädel M, Aird A, Zappe A, Tietz C, Krippner-Heidenreich A, Scheurich P: Dual function of cysteine rich domain (CRD) 1 of TNF receptor type 1: conformational stabilization of CRD2 and control of receptor responsiveness. Cell Signal 2010, 22:404-414.
  • [27]Boschert V, Krippner-Heidenreich A, Branschädel M, Tepperink J, Aird A, Scheurich P: Single chain TNF derivatives with individually mutated receptor binding sites reveal differential stoichiometry of ligand receptor complex formation for TNFR1 and TNFR2. Cell Signal 2010, 22:1088-1096.
  • [28]Chan FK: The pre-ligand binding assembly domain: a potential target of inhibition of tumour necrosis factor receptor function. Ann Rheum Dis 2000, 59(Suppl 1):i50-i53.
  • [29]Ranzinger J, Krippner-Heidenreich A, Haraszti T, Bock E, Tepperink J, Spatz JP, Scheurich P: Nanoscale arrangement of apoptotic ligands reveals a demand for a minimal lateral distance for efficient death receptor activation. Nano Lett 2009, 9:4240-4245.
  • [30]An H-J, Kim YJ, Song DH, Park BS, Kim HM, Lee JD, Paik S-G, Lee J-O, Lee H: Crystallographic and Mutational Analysis of the CD40-CD154 Complex and Its Implications for Receptor Activation. J Biol Chem 2011, 286:11226-11235.
  • [31]Reis CR, van Assen AH, Quax WJ, Cool RH: Unraveling the binding mechanism of trivalent tumor necrosis factor ligands and their receptors. Mol Cell Proteomics 2011, 10:M110.002808.
  • [32]Naismith JH, Sprang SR: Modularity in the TNF-receptor family. Trends Biochem Sci 1998, 23:74-79.
  • [33]Humphrey W, Dalke A, Schulten K: VMD: visual molecular dynamics. J Mol Graph 1996, 14:33-38. 27–28
  • [34]Bahar I, Rader AJ: Coarse-grained normal mode analysis in structural biology. Curr Opin Struct Biol 2005, 15:586-592.
  • [35]Eom K, Yoon G, Kim J-I, Na S: Coarse-grained elastic models of protein structures for understanding their mechanics and dynamics. J Comput and Theor Nanos 2010, 7:1210-1226.
  • [36]Moritsugu K, Smith J: Coarse-grained biomolecular simulation with REACH: Realistic Extension Algorithm via Covariance Hessian. Biophys J 2007, 93:3460-3469.
  • [37]Kondrashov DA, Cui Q, Phillips GN: Optimization and evaluation of a coarse-grained model of protein motion using x-ray crystal data. Biophys J 2006, 91:2760-2767.
  • [38]Zheng W, Brooks BR, Thirumalai D: Low-frequency normal modes that describe allosteric transitions in biological nanomachines are robust to sequence variations. Proc Natl Acad Sci U S A 2006, 103:7664-7669.
  • [39]Gohlke H, Kiel C, Case DA: Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RalGDS complexes. J Mol Biol 2003, 330:891-913.
  • [40]Wang L, Yang JK, Kabaleeswaran V, Rice AJ, Cruz AC, Park AY, Yin Q, Damko E, Jang SB, Raunser S, Robinson CV, Siegel RM, Walz T, Wu H: The Fas-FADD death domain complex structure reveals the basis of DISC assembly and disease mutations. Nat Struct Mol Biol 2010, 17:1324-1329.
  • [41]Hou T, Wang J, Li Y, Wang W: Assessing the performance of the MM/PBSA and MM/GBSA Methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model 2011, 51:69-82.
  • [42]Weis A, Katebzadeh K, Söderhjelm P, Nilsson I, Ryde U: Ligand affinities predicted with the MM/PBSA method: dependence on the simulation method and the force field. J Med Chem 2006, 49:6596-6606.
  • [43]Qin S, Zhou H-X: Do electrostatic interactions destabilize protein-nucleic acid binding? Biopolymers 2007, 86:112-118.
  • [44]Spoel Van Der D, Lindahl D, Hess B, Groenhof G, Mark AE, Berendsen HJC: GROMACS: fast, flexible, and free. J Comput Chem 2005, 26:1701-1718.
  • [45]Scott WRP, Hünenberger PH, Tironi IG, Mark AE, Billeter SR, Fennen J, Torda AE, Huber T, Krüger P, van Gunsteren WF: The GROMOS biomolecular simulation program package. J Phys Chem A 1999, 103:3596-3607.
  • [46]Berendsen HJC, Postma J, van Gunsteren WF, Hermans J: Interaction models for water in relation to protein hydration. In Intermolecular Forces. Edited by Pullman BD. Reidel Publishing Company, Boston; 1981:331-342.
  • [47]Berendsen HJC: Molecular-dynamics with coupling to an external bath. J Chem Phys 1984, 81:3684-3690.
  • [48]Parrinello M, Rahman A: Crystal structure and pair potentials: a molecular-dynamics study. Phys Rev Lett 1980, 45:1196-1199.
  • [49]Hess B, Bekker H, Berendsen HJC, Fraaije JGEM: LINCS: a linear constraint solver for molecular simulations. J Comput Chem 1997, 18:1463-1472.
  • [50]Srinivasan J, Cheatham TE, Cieplak P, Kollman PA, Case DA: Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate−DNA Helices. J Am Chem Soc 1998, 120:9401-9409.
  • [51]Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA: Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A 2001, 98:10037-10041.
  • [52]Sitkoff D, Sharp KA, Honig B: Accurate calculation of hydration free energies using macroscopic solvent models. J Phys Chem A 1994, 98:1978-1988.
  • [53]Bahar I, Atilgan AR, Erman B: Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential. Fold Des 1997, 2:173-181.
  • [54]Atilgan AR, Durell SR, Jernigan RL, Demirel MC, Keskin O, Bahar I: Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys J 2001, 80:505-515.
  • [55]Tehver R, Chen J, Thirumalai D: Allostery wiring diagrams in the transitions that drive the GroEL reaction cycle. J Mol Biol 2009, 387:390-406.
  • [56]Kabsch W, Sander C: Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983, 22:2577-2637.
  • [57]Frishman D, Argos P: Knowledge-based protein secondary structure assignment. Proteins 1995, 23:566-579.
  • [58]Tama F, Sanejouand YH: Conformational change of proteins arising from normal mode calculations. Protein Eng 2001, 14:1-6.
  • [59]Bakan A, Meireles LM, Bahar I: ProDy: protein dynamics inferred from theory and experiments. Bioinformatics 2011, 27:1575-1577.
  • [60]Grant BJ, Rodrigues AP, Elsawy KM, McCammon JA, Caves LS: Bio3d: an R package for the comparative analysis of protein structures. Bioinformatics 2006, 22:2695-2696.
  文献评价指标  
  下载次数:56次 浏览次数:19次