BMC Systems Biology | |
Bayesian model selection validates a biokinetic model for zirconium processing in humans | |
Fabian J Theis1  Matthias B Greiter2  Wei Bo Li2  Sabine Hug1  Daniel Schmidl1  | |
[1] Institute for Mathematical Sciences, Technische Universität München, Garching, Germany;Research Unit Medical Radiation Physics and Diagnostics, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany | |
关键词: Systems biology; Internal dosimetry; Compartmental model; MCMC sampling; Model selection; Bayesian inference; | |
Others : 1143748 DOI : 10.1186/1752-0509-6-95 |
|
received in 2012-03-09, accepted in 2012-06-30, 发布年份 2012 | |
【 摘 要 】
Background
In radiation protection, biokinetic models for zirconium processing are of crucial importance in dose estimation and further risk analysis for humans exposed to this radioactive substance. They provide limiting values of detrimental effects and build the basis for applications in internal dosimetry, the prediction for radioactive zirconium retention in various organs as well as retrospective dosimetry. Multi-compartmental models are the tool of choice for simulating the processing of zirconium. Although easily interpretable, determining the exact compartment structure and interaction mechanisms is generally daunting. In the context of observing the dynamics of multiple compartments, Bayesian methods provide efficient tools for model inference and selection.
Results
We are the first to apply a Markov chain Monte Carlo approach to compute Bayes factors for the evaluation of two competing models for zirconium processing in the human body after ingestion. Based on in vivo measurements of human plasma and urine levels we were able to show that a recently published model is superior to the standard model of the International Commission on Radiological Protection. The Bayes factors were estimated by means of the numerically stable thermodynamic integration in combination with a recently developed copula-based Metropolis-Hastings sampler.
Conclusions
In contrast to the standard model the novel model predicts lower accretion of zirconium in bones. This results in lower levels of noxious doses for exposed individuals. Moreover, the Bayesian approach allows for retrospective dose assessment, including credible intervals for the initially ingested zirconium, in a significantly more reliable fashion than previously possible. All methods presented here are readily applicable to many modeling tasks in systems biology.
【 授权许可】
2012 Schmidl et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150416073310324.pdf | 231KB | download | |
Figure 4. | 16KB | Image | download |
Figure 3. | 56KB | Image | download |
Figure 2. | 52KB | Image | download |
Figure 1. | 48KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]Eidgenössisches Nuklearsicherheitsinspektorat Informationsdienst: Radiologische Auswirkungen aus den kerntechnischen Unfällen in Fukushima vom 11.3.2011. Brugg, ENSI, Industriestrasse 19 5200 Brugg, Switzerland; 2011. http://www.ensi.ch/de/dossiers/fukushima-2/ensi-bericht-zu-fukushima-iv-radiologische-auswirkungen/
- [2]United Nations Scientific Committee on the Effects of Atomic Radiation: Sources and Effects of Ionizing Radiation. United Nations Publications, New York; 2008.
- [3]ICRP: Limits for Intakes of Radionuclides by Workers Part 1. ICRP Publication 30. Pergamon Press, Ann.ICRP 8(4), Oxford; 1979.
- [4]ICRP: Radiation Dose to Patients from Radiopharmaceuticals. ICRP Publication 53. Pergamon Press, Ann. ICRP 18(1–4), Oxford; 1987.
- [5]ICRP: Age-dependent Doses to Members of the Public from Intake of Radionuclides (Part 1 : Ingestion dose coefficients) ICRP Publication 56. Pergamon Press, Ann. ICRP 20(2), Oxford; 1989.
- [6]Greiter M, Giussani A, Höllriegl V, Li W, Oeh U: Human biokinetic data and a new compartmental model of zirconium – A tracer study with enriched stable isotopes. Sci Total Environ 2011, 409:3701-3710.
- [7]Li W, Greiter M, Oeh U, Hoeschen C: Reliability of a new biokinetic model of zirconium in internal dosimetry Part I , Parameter uncertainty analysis. Health Phys 2011, 101(6):660-676.
- [8]Li W, Greiter M, Oeh U, Hoeschen C: Reliability of a new biokinetic model of zirconium in internal dosimetry Part II , Parameter sensitivity analysis. Health Phys 2011, 101(6):676-692.
- [9]Guyton A, Hall J: Textbook of Medical Physiology (11th ed.). Elsevier Saunders, Philadelphia; 2006.
- [10]ICRP: Report on the Task Group on Reference Man. ICRP Publication 23. Pergamon Press, Oxford; 1975.
- [11]Jacquez J: Compartmental analysis in biology and medicine (3rd ed.). MI: BioMedware, Ann Arbor; 1996.
- [12]Clyde C, George E: Model Uncertainty. Stat Sci 2004, 19:81-94.
- [13]Marin J, Robert C: Bayesian core: a practical approach to computational Bayesian statistics. Springer Verlag, New York; 2007.
- [14]Bland J, Altman D: Bayesians and frequentists. BMJ 1998, 317:1151-1160.
- [15]Jeffreys H: Some tests of significance, treated by the theory of probability. Proc Camb Philol Soc 1935, 31:203-222.
- [16]Davison A: Statistical Models. Cambridge University Press, Cambridge; 2003.
- [17]Aris-Brosou S: How Bayes tests of molecular phylogenies compare with frequentist approaches. Bioinformatics 2003, 19:618-624.
- [18]Kass R, Raftery A: Bayes factors. J Am Stat Assoc 1995, 90:773-795.
- [19]Gelfand AE, Smith AFM: Sampling-based approaches to calculating marginal densities. J Am Stat Assoc 1990, 85:398-409.
- [20]Liu J: Monte Carlo strategies in scientific computing. Springer Verlag, New York; 2008.
- [21]Robert C, Casella G: Monte Carlo statistical methods. Springer Verlag, New York; 2004.
- [22]Ramsay J, Hooker G, Campbell D, Cao J: Parameter estimation for differential equations: a generalized smoothing approach. J R Stat Soc Series B Stat Methodol 2007, 69:741-796.
- [23]Schmidl D, Czado C, Theis F: A vine copula based adaptive MCMC sampler for efficient inference of dynamical systems. Bayesian Analaccepted
- [24]ICRP: Age-dependent Doses to Members of the Public from Intake of Radionuclides (Part 2: Ingestion dose coefficients). ICRP Publication 67. Pergamon Press, Ann. ICRP 23(3–4), Oxford; 1993.
- [25]Greiter M, Höllriegl V, Oeh U: Method development for thermal ionization mass spectrometry in the frame of a biokinetic tracer study with enriched stable isotopes of zirconium. Int J Mass Spectrom 2011, 304:1-8.
- [26]Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P: Molecular biology of the cell (4th ed.). Garland Science, New York; 2002.
- [27]Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling M, Klingmüller U, Timmer J: Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics 2009, 25:1923-1929.
- [28]Kirkpatrick S, Gelatt C, Vecchi M: Optimization by simulated annealing. Science 1983, 220:671-680.
- [29]Chib S, Jeliazkov I: Marginal likelihood from the Metropolis-Hastings output. J Am Stat Assoc 2001, 96:270-281.
- [30]Lodewyckx T, Kim W, Lee M, Tuerlinckx F, Kuppens P, Wagenmakers E: A tutorial on Bayes factor estimation with the product space method. J Math Psychol 2011, 55:331-347.
- [31]Myung I, Pitt M: Applying Occam’s razor in modeling cognition: A Bayesian approach. Psych Bull Rev 1997, 4:79-95.
- [32]Pitt M, Myung I, Zhang S: Toward a method of selecting among computational models of cognition. Psychol Rev 2002, 109:472-491.
- [33]Chib S: Marginal likelihood from the Gibbs output. J Am Stat Assoc 1995, 90:1313-1321.
- [34]Green P: Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 1995, 82:711-732.
- [35]Lartillot N, Philippe H: Computing Bayes factors using thermodynamic integration. Syst Biol 2006, 55:195-207.
- [36]Friel N, Pettitt N: Marginal likelihood estimation via power posteriors. J R Stat Soc Series B Stat Methodol 2008, 70:589-607.
- [37]Xu T, Vyshemirsky V, Gormand A, von Kriegsheim A, Girolami M, Baillie G, Ketley D, Dunlop A, Milligan G, Houslay M, Kolch W: Inferring signaling pathway topologies from multiple perturbation measurements of specific biochemical species. Sci Signal 2010, 3:ra20.
- [38]Calderhead B, Girolami M: Estimating Bayes factors via thermodynamic integration and population MCMC. Comput Stat Data Anal 2009, 53:4028-4045.
- [39]Gelman A, Meng X: Simulating normalizing constants: from importance sampling to bridge sampling to path sampling. Stat Sci 1998, 13:163-185.
- [40]Min A, Czado C: Bayesian inference for multivariate copulas using pair-copula constructions. Journal of Financial Econometrics 2010, 8:511-546.
- [41]Salvadori G: Extremes in nature: an approach using copulas. Springer Verlag, New York; 2007.
- [42]Kurowicka D, Joe H: Dependence Modeling: Vine Copula Handbook. World Scientific Publishing Co. Pte. Ltd, Singapore; 2010.
- [43]Neal R: Probabilistic Inference Using Markov Chain Monte Carlo Methods. Tech. rep., University of Toronto; 1993. http://www.cs.toronto.edu/∼radford/review.abstract.html
- [44]ICRP: Individual Monitoring for Internal Exposure of Workers. ICRP Publication 78. Pergamon Press, Ann. ICRP 27(3–4), Oxford; 1997.
- [45]Bundesministerium für Umwelt Naturschutz und Reaktorsicherheit: Richtlinie für die physikalische Strahlenschutzkontrolle zur Ermittlung der Körperdosis. Teil 2: Ermittlung der Körperdosis bei innerer Strahlenexposition (Inkorporationsüberwachung) (§§40, 41 und 42 StrlSchV). Bonn; 2007.
- [46]ICRP: Nuclear Decay Data for Dosimetric Calculations. ICRP Publication 107. Pergamon Press, Ann. ICRP 38(3), Oxford; 2008.
- [47]Krumsiek J, Pölsterl S, Wittmann D, Theis F: Odefy-From discrete to continuous models. BMC Bioinformatics 2010, 11:233. BioMed Central Full Text
- [48]Becker V, Schilling M, Bachmann J, Baumann U, Raue A, Maiwald T, Timmer J, Klingmüller U: Covering a broad dynamic range: information processing at the erythropoietin receptor. Science 2010, 328(5984):1404-1408.
- [49]Raia V, Schilling M, Böhm M, Hahn B, Kowarsch A, Raue A, Sticht C, Bohl S, Saile M, Möller P, Gretz N, Timmer J, Theis F, Lehmann WD, Lichter P U K: Dynamic mathematical modeling of IL13-induced signaling in Hodgkin and primary mediastinal B-cell lymphoma allows prediction of therapeutic targets. Cancer Res 2011, 71(3):693-704.
- [50]Zhao W, Elie V, Roussey G, Brochard K, Niaudet P, Leroy V, Loirat C, Cochat P, Cloarec S, Garaix F, Bensman A, Fakhoury M, Jacqz-Aigrain E, André J: Population pharmacokinetics and pharmacogenetics of tacrolimus in de novo pediatric kidney transplant recipients. Clin Pharmacol Ther 2009, 86(6):609-618.