期刊论文详细信息
BMC Genomics
A mRNA landscape of bovine embryos after standard and MAPK-inhibited culture conditions: a comparative analysis
Bernard AJ Roelen5  Henk P Haagsman3  Kaveh Mashayekhi2  Sascha G IJzer5  Frank M Riemers4  Marian JA Groot Koerkamp1  Helena TA van Tol5  Bas Brinkhof5 
[1] University Medical Center Utrecht, Molecular Cancer Research, Utrecht 3508 AB, The Netherlands;BioTalentum Ltd, Aulich L u.26, Gödöllő 2100, Hungary;Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, Utrecht 3584 CL, The Netherlands;Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, University Utrecht, Yalelaan 108, Utrecht 3584 CM, The Netherlands;Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, Utrecht 3584 CM, The Netherlands
关键词: MAPK;    NANOG;    Trophectoderm;    ICM;    Blastocyst;    Morula;    Cattle;    Pluripotency;   
Others  :  1170981
DOI  :  10.1186/s12864-015-1448-x
 received in 2015-02-26, accepted in 2015-03-06,  发布年份 2015
PDF
【 摘 要 】

Background

Genes and signalling pathways involved in pluripotency have been studied extensively in mouse and human pre-implantation embryos and embryonic stem (ES) cells. The unsuccessful attempts to generate ES cell lines from other species including cattle suggests that other genes and pathways are involved in maintaining pluripotency in these species. To investigate which genes are involved in bovine pluripotency, expression profiles were generated from morula, blastocyst, trophectoderm and inner cell mass (ICM) samples using microarray analysis. As MAPK inhibition can increase the NANOG/GATA6 ratio in the inner cell mass, additionally blastocysts were cultured in the presence of a MAPK inhibitor and changes in gene expression in the inner cell mass were analysed.

Results

Between morula and blastocyst 3,774 genes were differentially expressed and the largest differences were found in blastocyst up-regulated genes. Gene ontology (GO) analysis shows lipid metabolic process as the term most enriched with genes expressed at higher levels in blastocysts. Genes with higher expression levels in morulae were enriched in the RNA processing GO term. Of the 497 differentially expressed genes comparing ICM and TE, the expression of NANOG, SOX2 and POU5F1 was increased in the ICM confirming their evolutionary preserved role in pluripotency. Several genes implicated to be involved in differentiation or fate determination were also expressed at higher levels in the ICM. Genes expressed at higher levels in the ICM were enriched in the RNA splicing and regulation of gene expression GO term. Although NANOG expression was elevated upon MAPK inhibition, SOX2 and POU5F1 expression showed little increase. Expression of other genes in the MAPK pathway including DUSP4 and SPRY4, or influenced by MAPK inhibition such as IFNT, was down-regulated.

Conclusion

The data obtained from the microarray studies provide further insight in gene expression during bovine embryonic development. They show an expression profile in pluripotent cells that indicates a pluripotent, epiblast-like state. The inability to culture ICM cells as stem cells in the presence of an inhibitor of MAPK activity together with the reported data indicates that MAPK inhibition alone is not sufficient to maintain a pluripotent character in bovine cells.

【 授权许可】

   
2015 Brinkhof et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150418022110511.pdf 3963KB PDF download
Figure 6. 54KB Image download
Figure 5. 93KB Image download
Figure 4. 140KB Image download
Figure 3. 53KB Image download
Figure 2. 82KB Image download
Figure 1. 90KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Plusa B, Piliszek A, Frankenberg S, Artus J, Hadjantonakis AK: Distinct sequential cell behaviours direct primitive endoderm formation in the mouse blastocyst. Development 2008, 135(18):3081-3091.
  • [2]Chazaud C, Yamanaka Y, Pawson T, Rossant J: Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Dev Cell 2006, 10(5):615-624.
  • [3]Tanaka S, Kunath T, Hadjantonakis AK, Nagy A, Rossant J: Promotion to trophoblast stem cell proliferation by FGF4. Science 1998, 282(5396):2072-2075.
  • [4]Ralston A, Rossant J: Genetic regulation of stem cell origins in the mouse embryo. Clin Genet 2005, 68(2):106-112.
  • [5]Strumpf D, Mao C, Yamanaka Y, Ralston A, Chawengsaksophak K, Beck F, et al.: Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 2005, 132(9):2093-2102.
  • [6]Wallingford MC, Angelo JR, Mager J: Morphogenetic analysis of peri-implantation development. Dev Dyn 2013, 242(9):1110-1120.
  • [7]Zernicka-Goetz M, Morris SA, Bruce AW: Making a firm decision: Multifaceted regulation of cell fate in the early mouse embryo. Nat Rev Gen 2009, 10(7):467-477.
  • [8]Kurosaka S, Eckardt S, McLaughlin KJ: Pluripotent lineage definition in bovine embryos by Oct4 transcript localization. Biol Reprod 2004, 71(5):1578-1582.
  • [9]Berg DK, Smith CS, Pearton DJ, Wells DN, Broadhurst R, Donnison M, et al.: Trophectoderm lineage determination in cattle. Dev Cell 2011, 20(2):244-255.
  • [10]Nichols J, Smith A: Naive and Primed Pluripotent States. Cell Stem Cell 2009, 4(6):487-492.
  • [11]Yamanaka Y, Lanner F, Rossant J: FGF signal-dependent segregation of primitive endoderm and epiblast in the mouse blastocyst. Development 2010, 137(5):715-724.
  • [12]Schrode N, Saiz N, Di Talia S, Hadjantonakis AK: GATA6 levels modulate primitive endoderm cell fate choice and timing in the mouse blastocyst. Dev Cell 2014, 29(4):454-467.
  • [13]Kuijk EW, van Tol LTA, Van de Velde H, Wubbolts R, Welling M, Geijsen N, et al.: The roles of FGF and MAP kinase signaling in the segregation of the epiblast and hypoblast cell lineages in bovine and human embryos. Development 2012, 139(5):871-882.
  • [14]Van Der Jeught M, O’Leary T, Ghimire S, Lierman S, Duggal G, Versieren K, et al.: The combination of inhibitors of FGF/MEK/Erk and GSK3ß signaling increases the number of OCT3/4-and NANOG-positive cells in the human inner cell mass, but does not improve stem cell derivation. Stem Cells Dev 2013, 22(2):296-306.
  • [15]Roode M, Blair K, Snell P, Elder K, Marchant S, Smith A, et al.: Human hypoblast formation is not dependent on FGF signalling. Dev Biol 2012, 361(2):358-363.
  • [16]Evans MJ, Kaufman MH: Establishment in culture of pluripotential cells from mouse embryos. Nature 1981, 292(5819):154-156.
  • [17]Martin GR: Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 1981, 78(12):7634-7638.
  • [18]Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Becker RA, et al.: Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci U S A 1995, 92(17):7844-7848.
  • [19]Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al.: Embryonic stem cell lines derived from human blastocysts. Science 1998, 282(5391):1145-1147.
  • [20]Buehr M, Meek S, Blair K, Yang J, Ure J, Silva J, et al.: Capture of authentic embryonic stem cells from rat blastocysts. Cell 2008, 135(7):1287-1298.
  • [21]Hackett JA, Surani MA: Regulatory principles of pluripotency: from the ground state up. Cell Stem Cell 2014, 15(4):416-430.
  • [22]Telugu BPVL, Ezashi T, Roberts RM: The promise of stem cell research in pigs and other ungulate species. Stem Cell Rev Rep 2010, 6(1):31-41.
  • [23]Tanaka TS, Kunath T, Kimber WL, Jaradat SA, Stagg CA, Usuda M, et al.: Gene expression profiling of embryo-derived stem cells reveals candidate genes associated with pluripotency and lineage specificity. Genome Res 2002, 12(12):1921-1928.
  • [24]Hamatani T, Daikoku T, Wang H, Matsumoto H, Carter MG, Ko MSH, et al.: Global gene expression analysis identifies molecular pathways distinguishing blastocyst dormancy and activation. Proc Natl Acad Sci U S A 2004, 101(28):10326-10331.
  • [25]Auer H, Lyianarachchi S, Newsom D, Klisovic M, Marcucci G, Kornacker K: Chipping away at the chip bias: RNA degradation in microarray analysis. Nat Genet 2003, 35(4):292-293.
  • [26]Eklund AC, Szallasi Z: Correction of technical bias in clinical microarray data improves concordance with known biological information. Genome Biol 2008, 9(2):R26. BioMed Central Full Text
  • [27]Shi L: The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotech 2006, 24(9):1151-1161.
  • [28]Li Q, Birkbak N, Gyorffy B, Szallasi Z, Eklund A: Jetset: selecting the optimal microarray probe set to represent a gene. BMC Bioinformatics 2011, 12(1):474. BioMed Central Full Text
  • [29]Xie D, Chen C, Ptaszek LM, Xiao S, Cao X, Fang F, et al.: Rewirable gene regulatory networks in the preimplantation embryonic development of three mammalian species. Genome Res 2010, 20(6):804-815.
  • [30]Madeja Z, Sosnowski J, Hryniewicz K, Warzych E, Pawlak P, Rozwadowska N, et al.: Changes in sub-cellular localisation of trophoblast and inner cell mass specific transcription factors during bovine preimplantation development. BMC Dev Biol 2013, 13(1):32. BioMed Central Full Text
  • [31]Khan DR, Dubé D, Gall L, Peynot N, Ruffini S, Laffont L, et al.: Expression of Pluripotency Master Regulators during Two Key Developmental Transitions: EGA and Early Lineage Specification in the Bovine Embryo. PLoS One 2012, 7(3):e34110.
  • [32]Ozawa M, Sakatani M, Yao J, Shanker S, Yu F, Yamashita R, et al.: Global gene expression of the inner cell mass and trophectoderm of the bovine blastocyst. BMC Dev Biol 2012, 12(1):33. BioMed Central Full Text
  • [33]Du Z, Zhou X, Ling Y, Zhang Z, Su Z: agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 2010, 38(suppl 2):W64-W70.
  • [34]Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, et al.: Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 2005, 122(6):947-956.
  • [35]Ying Q, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, et al.: The ground state of embryonic stem cell self-renewal. Nature 2008, 453(7194):519-523.
  • [36]Veltmaat JM, Orelio CC, Ward-Van Oostwaard D, Van Rooijen MA, Mummery CL, Defize LHK: Snail is an immediate early target gene of parathyroid hormone related peptide signaling in parietal endoderm formation. Int J Dev Biol 2000, 44(3):297-307.
  • [37]Sumer H, Liu J, Malaver-Ortega LF, Lim ML, Khodadadi K, Verma PJ: NANOG is a key factor for induction of pluripotency in bovine adult fibroblasts. J Anim Sci 2011, 89(9):2708-2716.
  • [38]Nagatomo H, Kagawa S, Kishi Y, Takuma T, Sada A, Yamanaka K, et al.: Transcriptional wiring for establishing cell lineage specification at the blastocyst stage in Cattle1. Biol Reprod 2013, 88(6):158.
  • [39]Zimin AV, Delcher AL, Florea L, Kelley DR, Schatz MC, Puiu D, et al.: A whole-genome assembly of the domestic cow, Bos taurus. Genome Biol 2009, 10(4):R42. BioMed Central Full Text
  • [40]Kues WA, Sudheer S, Herrmann D, Carnwath JW, Havlicek V, Besenfelder U, et al.: Genome-wide expression profiling reveals distinct clusters of transcriptional regulation during bovine preimplantation development in vivo. Proc Natl Acad Sci U S A 2008, 105(50):19768-19773.
  • [41]Sirard MA: Factors affecting oocyte and embryo transcriptomes. Reprod Domest Anim 2012, 47(Suppl.4):148-155.
  • [42]Graf A, Krebs S, Heininen-Brown M, Zakhartchenko V, Blum H, Wolf E: Genome activation in bovine embryos: Review of the literature and new insights from RNA sequencing experiments. Anim Reprod Sci 2014, 149(1–2):46-58.
  • [43]Loh KM, Lim B: A precarious balance: pluripotency factors as lineage specifiers. Cell Stem Cell 2011, 8(4):363-369.
  • [44]Wang Z, Oron E, Nelson B, Razis S, Ivanova N: Distinct Lineage Specification Roles for NANOG, OCT4, and SOX2 in Human Embryonic Stem Cells. Cell Stem Cell 2012, 10(4):440-454.
  • [45]Jaenisch R, Young R: Stem Cells, the Molecular Circuitry of Pluripotency and Nuclear Reprogramming. Cell 2008, 132(4):567-582.
  • [46]Sakurai T, Sakamoto A, Muroi Y, Bai H, Nagaoka K, Tamura K, et al.: Induction of endogenous interferon tau gene transcription by CDX2 and high acetylation in bovine nontrophoblast cells. Biol Reprod 2009, 80(6):1223-1231.
  • [47]Ezashi T, Ghosh D, Roberts RM: Repression of Ets-2-induced transactivation of the tau interferon promoter by Oct-4. Mol Cell Biol 2001, 21(23):7883-7891.
  • [48]Johnson KM, Alvarez X, Borkhsenious ON, Kubisch HM: Nuclear and cytoplasmic localization of interferon-t in in vitro-produced bovine blastocysts. Reprod Nutr Dev 2006, 46(1):97-104.
  • [49]Roberts RM: Interferon-tau, a Type 1 interferon involved in maternal recognition of pregnancy. Cytokine Growth Factor Rev 2007, 18(5–6):403-408.
  • [50]Imakawa K, Kim MS, Matsuda-Minehata F, Ishida S, Iizuka M, Suzuki M, et al.: Regulation of the ovine interferon-tau gene by a blastocyst-specific transcription factor, Cdx2. Mol Reprod Dev 2006, 73(5):559-567.
  • [51]Loh YH, Wu Q, Chew JL, Vega VB, Zhang W, Chen X, et al.: The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 2006, 38(4):431-440.
  • [52]D’Souza WN, Chang CF, Fischer AM, Li M, Hedrick SM: The Erk2 MAPK regulates CD8 T cell proliferation and survival. J Immunol 2008, 181(11):7617-7629.
  • [53]Wilkinson B, Kaye J: Requirement for sustained MAPK signaling in both CD4 and CD8 lineage commitment: A threshold model. Cell Immunol 2001, 211(2):86-95.
  • [54]Kondoh K, Nishida E: Regulation of MAP kinases by MAP kinase phosphatases. Biochim Biophys Acta Mol Cell Res 2007, 1773(8):1227-1237.
  • [55]Chu Y, Solski PA, Khosravi-Far R, Der CJ, Kelly K: The mitogen-activated protein kinase phosphatases PAC1, MKP-1, and MKP-2 have unique substrate specificities and reduced activity in vivo toward the ERK2 sevenmaker mutation. J Biol Chem 1996, 271(11):6497-6501.
  • [56]Casci T, Vinós J, Freeman M: Sprouty, an intracellular inhibitor of Ras signaling. Cell 1999, 96(5):655-665.
  • [57]Fürthauer M, Reifers F, Brand M, Thisse B, Thisse C: Sprouty4 acts in vivo as a feedback-induced antagonist of FGF signaling in zebrafish. Development 2001, 128(12):2175-2186.
  • [58]Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR: A stem cell molecular signature. Science 2002, 298(5593):601-604.
  • [59]Sakaguchi T, Nishimoto M, Miyagi S, Iwama A, Morita Y, Iwamori N, et al.: Putative “stemness” gene Jam-B is not required for maintenance of stem cell state in embryonic, neural, or hematopoietic stem cells. Mol Cell Biol 2006, 26(17):6557-6570.
  • [60]Wang Y, Lui WY: Opposite effects of interleukin-1a and transforming growth factor-ß2 induce stage-specific regulation of junctional adhesion molecule-B gene in sertoli cells. Endocrinology 2009, 150(5):2404-2412.
  • [61]Kim JH, Jee MK, Lee SY, Han TH, Kim BSBS, Kang KS, et al.: Regulation of adipose tissue stromal cells behaviors by endogenic Oct4 expression control. PLoS One 2009, 4(9):e7166.
  • [62]Acampora D, Di Giovannantonio LG, Simeone A: Otx2 is an intrinsic determinant of the embryonic stem cell state and is required for transition to a stable epiblast stem cell condition. Development 2013, 140(1):43-55.
  • [63]Yang SH, Kalkan T, Morissroe C, Marks H, Stunnenberg H, Smith A, et al.: Otx2 and Oct4 Drive Early Enhancer Activation during Embryonic Stem Cell Transition from Naive Pluripotency. Cell Rep 2014, 7(6):1968-1981.
  • [64]Ying QL, Nichols J, Chambers I, Smith A: BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 2003, 115(3):281-292.
  • [65]Ma Z, Swigut T, Valouev A, Rada-Iglesias A, Wysocka J: Sequence-specific regulator Prdm14 safeguards mouse ESCs from entering extraembryonic endoderm fates. Nat Struct Mol Biol 2011, 18(2):120-128.
  • [66]Yamaji M, Seki Y, Kurimoto K, Yabuta Y, Yuasa M, Shigeta M, et al.: Critical function of Prdm14 for the establishment of the germ cell lineage in mice. Nat Genet 2008, 40(8):1016-1022.
  • [67]Kurimoto K, Yabuta Y, Ohinata Y, Ono Y, Uno KD, Yamada RG, et al.: An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis. Nucleic Acids Res 2006, 34(5):e42.
  • [68]Grabole N, Tischler J, Hackett JA, Kim S, Tang F, Leitch HG, et al.: Prdm14 promotes germline fate and naive pluripotency by repressing FGF signalling and DNA methylation. EMBO Rep 2013, 14(7):629-637.
  • [69]Kuo JS, Patel M, Gamse J, Merzdorf C, Liu X, Apekin V, et al.: opl: A zinc finger protein that regulates neural determination and patterning in Xenopus. Development 1998, 125(15):2867-2882.
  • [70]Grinblat Y, Sive H: zic gene expression marks anteroposterior pattern in the presumptive neurectoderm of the zebrafish gastrula. Dev Dyn 2001, 222(4):688-693.
  • [71]Brown L, Brown S: Zic2 is expressed in pluripotent cells in the blastocyst and adult brain expression overlaps with makers of neurogenesis. Gene Expr Patterns 2009, 9(1):43-49.
  • [72]Lim LS, Loh YH, Zhang W, Li Y, Chen X, Wang Y, et al.: Zic3 is required for maintenance of pluripotency in embryonic stem cells. Mol Biol Cell 2007, 18(4):1348-1358.
  • [73]Roper SJ, Chrysanthou S, Senner CE, Sienerth A, Gnan S, Murray A, et al.: ADP-ribosyltransferases Parp1 and Parp7 safeguard pluripotency of ES cells. Nucleic Acids Res 2014, 42(14):8914-8927.
  • [74]Parrish JJ, Susko-Parrish J, Winer MA, First NL: Capacitation of bovine sperm by heparin. Biol Reprod 1988, 38(5):1171-1180.
  • [75]Izadyar F, Colenbrander B, Bevers MM: In vitro maturation of bovine oocytes in the presence of growth hormone accelerates nuclear maturation and promotes subsequent embryonic development. Mol Reprod Dev 1996, 45(3):372-377.
  • [76]Rizos D, Gutiérrez-Adán A, Pérez-Garnelo S, De la Fuente J, Boland MP, Lonergan P: Bovine embryo culture in the presence or absence of serum: Implications for blastocyst development, cryotolerance, and messenger RNA expression. Biol Reprod 2003, 68(1):236-243.
  • [77]Nicacio AC, Simõs R, De Paula-Lopes FF, De Barros FRO, Peres MA, Assumpção MEOD, et al.: Effects of different cryopreservation methods on post-thaw culture conditions of in vitro produced bovine embryos. Zygote 2012, 20(2):117-122.
  • [78]Stringfellow DA, Givens MD: A procedural guide and general information for the use of embryo transfer technology emphasizing sanitary procedures. In International Embryo Transfer Manual. 4th edition. IETS Publish, Savoy, IL, USA; 2009:151.
  • [79]Bó GA, Mapletoft RJ: Evaluation and classification of bovine embryos. Anim Reprod 2013, 10(3):344-348.
  • [80]van Wageningen S, Kemmeren P, Lijnzaad P, Margaritis T, Benschop JJ, de Castro IJ, et al.: Functional overlap and regulatory links shape genetic interactions between signaling pathways. Cell 2010, 143(6):991-1004.
  • [81]Roepman P, de Koning E, van Leenen D, de Weger R, Kummer JA, Slootweg P, et al.: Dissection of a metastatic gene expression signature into distinct components. Genome Biol 2006, 7(12):1-12. BioMed Central Full Text
  • [82]Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, et al.: Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 2002, 30(4):e15.
  • [83]Margaritis T, Lijnzaad P, van Leenen D, Bouwmeester D, Kemmeren P, van Hooff SR, et al.: Adaptable gene‐specific dye bias correction for two‐channel DNA microarrays. Mol Syst Biol 2009, 5(1):266.
  • [84]Wu H, Kerr MK, Cui X, Churchill G: MAANOVA: A Software Package for the Analysis of Spotted cDNA Microarray Experiments. In The analysis of gene expression data: methods and software. Edited by Parmigiani G, Garrett E, Irizarry R, Zeger S. Springer, New York; 2003:313-341.
  • [85]Edgar R, Domrachev M, Lash AE: Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 2002, 30(1):207-210.
  • [86]GSE63054 is the reference Series for your publication [http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63054]
  • [87]Genbank [http://www.ncbi.nlm.nih.gov/nucleotide/]
  • [88]Primer-Blast [http://www.ncbi.nlm.nih.gov/tools/primer-blast/]
  • [89]SantaLucia J: A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci U S A 1998, 95(4):1460-1465.
  • [90]Zuker M: Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 2003, 31(13):3406-3415.
  • [91]Mfold [http://mfold.rit.albany.edu/?q=mfold/DNA-Folding-Form]
  • [92]Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al.: Fiji: An open-source platform for biological-image analysis. Nat Methods 2012, 9(7):676-682.
  文献评价指标  
  下载次数:0次 浏览次数:5次