BMC Cardiovascular Disorders | |
Comparison of different vascular risk engines in the identification of type 2 diabetes patients with high cardiovascular risk | |
Josep Franch-Nadal4  Joan Barrot de-la-Puente5  José M. Millaruelo-Trillo1  José M. Garrido-Martín5  Marc Saez2  Gabriel Coll-de-Tuero3  Antonio Rodriguez-Poncelas5  | |
[1] PHC Torrero La Paz, Zaragoza, Spain;Research Group in Statistic,Applied economy and Health. (GRECS), University of Girona, Girona, Spain;Research Unit, IdIAP, Maluquer Salvador,11, Girona, 17002, Spain;PHC Raval Sud, ICS, Barcelona, Spain;Unitat de Suport a la Recerca Barcelona Ciutat, Institut Universitari d’Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Barcelona, Spain | |
关键词: Primary prediction; Risk prediction models; Cardiovascular disease; Cardiovascular risk prediction; Type 2 diabetes; | |
Others : 1228280 DOI : 10.1186/s12872-015-0120-3 |
|
received in 2014-10-07, accepted in 2015-10-01, 发布年份 2015 | |
【 摘 要 】
Background
Some authors consider that secondary prevention should be conducted for all DM2 patients, while others suggest that the drug preventive treatment should start or be increased depending on each patient’s individual CVR, estimated using cardiovascular or coronary risk functions to identify the patients with a higher CVR. The principal objective of this study was to assess three different cardiovascular risk prediction models in type 2 diabetes patients.
Methods
Multicentre, cross-sectional descriptive study of 3,041 patients with type 2 diabetes and no history of cardiovascular disease. The demographic, clinical, analytical, and cardiovascular risk factor variables associated with type 2 diabetes were analysed. The risk function and probability that a cardiovascular disease could occur were estimated using three risk engines: REGICOR, UKPDS and ADVANCE. A patient was considered to have a high cardiovascular risk when REGICOR ≥ 10 % or UKPDS ≥ 15 % in 10 years or when ADVANCE ≥ 8 % in 4 years.
Results
The ADVANCE and UKPDS risk engines identified a higher number of diabetic patients with a high cardiovascular risk (24.2 % and 22.7 %, respectively) compared to the REGICOR risk engine (10.2 %). The correlation using the REGICOR risk engine was low compared to UKPDS and ADVANCE (r = 0.288 and r = 0.153, respectively; p < 0.0001). The agreement values in the allocation of a particular patient to the high risk group was low between the REGICOR engine and the UKPDS and ADVANCE engines (k = 0.205 and k = 0.123, respectively; p < 0.0001) and acceptable between the ADVANCE and UKPDS risk engines (k = 0.608).
Conclusions
There are discrepancies between the general population and the type 2 diabetic patient-specific risk engines. The results of this study indicate the need for a prospective study which validates specific equations for diabetic patients in the Spanish population, as well as research on new models for cardiovascular risk prediction in these patients.
【 授权许可】
2015 Rodriguez-Poncelas et al.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20151014011659579.pdf | 413KB | download |
【 参考文献 】
- [1]Roglic G, Unwin N, Bennett PH, Mathers C, Tuomilehto J, Nag S, et al.: The Burden of Mortality Attributable to Diabetes: Realistic estimates for the year 2000. Diabetes Care 2005, 28:2130-2135.
- [2]Franco OH, Steyerberg EW, Hu FB, Mackenbach J, Nusselder W: Associations of Diabetes Mellitus With Total Life Expectancy and Life Expectancy With and Without Cardiovascular Disease. Arch Intern Med 2007, 167:1145-1151.
- [3]Seshasai SR, Kaptoge S, Thompson A, Di Angelantonio E, Gao P, Sarwar N, et al.: Diabetes Mellitus, Fasting Glucose, and Risk of Cause-Specific Death. The Emerging Risk Factors Collaboration. N Engl J Med 2011, 364:829-84.
- [4]Huang ES, Basu A, O’Grady M, Capretta JC: Projecting the Future Diabetes Population Size and Related Costs for the U.S. Diabetes Care 2009, 32:2225-2229.
- [5]Solomon SD: Implications of Contemporary Clinical Trials Cardiovascular Clinical Trials in Patients With Diabetes Mellitus: Lessons From the Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D) Study. Circulation 2010, 121:2453-2455.
- [6]Wannamethee SG, Shaper AG, Whincup PH, Lennon L, Sattar N: Impact of Diabetes on Cardiovascular Disease Risk and All-Cause Mortality in Older Men: Influence of Age at Onset, Diabetes Duration, and Established and Novel Risk Factors. Arch Intern Med 2011, 171:404-410.
- [7]Boyko EJ, Meigs JB: Does Diabetes Always Confer Coronary Heart Disease Risk Equivalent to a Prior Myocardial Infarction?: Implications for prevention. Diabetes Care 2011, 34:782-784.
- [8]Hu FB, Stampfer MJ, Solomon CG, Liu S, Willett WC, Speizer FE, et al.: The impact of diabetes mellitus on mortality from all causes and coronary heart disease in women: 20 years of follow-up. Arch Intern Med 2001, 161:1717-23.
- [9]Fox CS, Sullivan L, D’Agostino RB Sr, Wilson PW: Framingham Heart Study. The significant effect of diabetes duration on coronary heart disease mortality: the Framingham Heart Study. Diabetes Care 2004, 27:704-8.
- [10]Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M: Mortality from coronary heart disease in subjects with Type 2 diabetes and in non-diabetic subjects with and without prior myocardial infarction. N Engl J Med 1998, 339:229-34.
- [11]Vaccaro O, Eberly LE, Neaton JD, Yang L, Riccardi G, Stamler J: Multiple Risk Factor Intervention Trial Research Group. Impact of diabetes and previous myocardial infarction on long-term survival: 25-year mortality follow-up of primary screenees of the Multiple Risk Factor Intervention Trial. Arch Intern Med 2004, 164:1438-43.
- [12]Juutilainen A, Lehto S, Rönnemaa T, Pyörälä K, Laakso M: Type 2 diabetes as a “coronary heart disease equivalent”: an 18-year prospective population-based study in Finnish subjects. Diabetes Care 2005, 28:2901-7.
- [13]Bulugahapitiya U, Siyambalapitiya S, Sithole J, Idris I: Is diabetes a coronary risk equivalent? Systematic review and meta-analysis. Diabet Med 2009, 26:142-8.
- [14]Timbie JW, Hayward RA, Vijan S: Variation in the Net Benefit of Aggressive Cardiovascular Risk Factor Control Across the US Population of Patients With Diabetes Mellitus. Arch Intern Med 2010, 170:1037-1044.
- [15]Marrugat J, Solanas P, D’Agostino R, Sullivan L, Ordovas J, Cordón F, et al.: Coronary risk estimation in Spain using a calibrated Framingham function. Rev Esp Cardiol 2003, 56:253-61.
- [16]Conroy RM, Pyörälä K, Fitzgerald AP, Sans S, Menotti A, De Backer G, et al.: SCORE project group. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J 2003, 24:987-1003.
- [17]Buitrago F, Cañón-Barroso L, Díaz-Herrera N, Cruces-Muro E, Escobar-Fernández M, Serrano-Arias JM: Comparison of the REGICOR and SCORE function charts for classifying cardiovascular risk and for selecting patients for hypolipidemic or antihypertensive treatment. Rev Esp Cardiol 2007, 60:139-47.
- [18]Stevens RJ, Kothari V, Adler AI, Stratton IM: United Kingdom Prospective Diabetes Study (UKPDS) Group: The UKPDS risk engine: a model for the risk of coronary heart disease in Type II diabetes (UKPDS 56). Clin Sci (Lond) 2001, 101:671-9.
- [19]Kengne AP, Patel A, Colagiuri S, Heller S, Hamet P, Marre M, et al.: ADVANCE Collaborative Group: The Framingham and UK Prospective Diabetes Study (UKPDS) risk equations do not reliably estimate the probability of cardiovascular events in a large ethnically diverse sample of patients with diabetes: the Action in Diabetes and Vascular Disease: Preterax and Diamicron-MR Controlled Evaluation (ADVANCE) Study. Diabetologia 2010, 53:821-31.
- [20]Mata-Cases M, Roura-Olmeda P, Berengué-Iglesias M, Birulés-Pons M, Mundet-Tuduri X, Franch-Nadal J, et al.: Diabetes Study Group in Primary Health Care: Fifteen years of continuous improvement of quality care of type 2 diabetes mellitus in primary care in Catalonia, Spain. Int J Clin Pract 2012, 66:289-98.
- [21]Franch-Nadal J, Martínez-Sierra MC, Espelt A, Sagarra-Busquets E, Patitucci-Gómez F, Goday-Arno A: representing the researchers from the redGDPS: The Diabetic Immigrant: Cardiovascular Risk Factors and Control. Contributions of the IDIME Study. Rev Esp Cardiol 2013, 66:39-46.
- [22]Rodriguez-Poncelas A, Garre-Olmo J, Franch-Nadal J, Diez-Espino J, Mundet-Tuduri X, Barrot-De la Puente J, et al.: RedGDPS Study Group: Prevalence of chronic kidney disease in patients with type 2 diabetes in Spain: PERCEDIME2 study. BMC Nephrol 2013, 14:46. BioMed Central Full Text
- [23]American Diabetes Association Diagnosis and Classification of Diabetes Mellitus.. Diabetes Care 2010; 33:S62-S69; doi:10.2337/dc10-S062
- [24]Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, Kusek JW, Van Lente F: Chronic Kidney Disease Epidemiology Collaboration: Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med 2006, 145:247-54.
- [25]van Dieren S, Beulens JW, Kengne AP, Peelen LM, Rutten GE, Woodward M, et al.: Prediction models for the risk of cardiovascular disease in patients with type 2 diabetes: a systematic review. Heart 2012, 98:360-9.
- [26]Marrugat J, Subirana I, Comín E, Cabezas C, Vila J, Elosua R, et al.: VERIFICA Investigators: Validity of an adaptation of the Framingham cardiovascular risk function: the VERIFICA Study. J Epidemiol Community Health 2007, 61:40-7.
- [27]Cañón Barroso L, Díaz Herrera N, Calvo Hueros JI, Cruces Muro E, Nieto Hernández T, Buitrago RF: Incidence of cardiovascular disease and validity of equations of coronary risk in diabetic patients with metabolic syndrome. Med Clin (Barc) 2007, 128:529-35.
- [28]Jimeno Mollet J, Molist Brunet N, Franch Nadal J, Serrano Borraz V, Serrano Barragán L, Gracia GR: Variability in the calculation of coronary risk in type-2 diabetes mellitus. Aten Primaria 2005, 35:30-6.
- [29]Rydén L, Grant PJ, Anker SD, Berne C, Cosentino F, Danchin N, et al.: ESC guidelines on diabetes, prediabetes, and cardiovascular diseases developed in collaboration with the EASD: the Task Force on diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and developed in collaboration with the European Association for the Study of Diabetes (EASD). Eur Heart J 2013, 34:3035-87.
- [30]Shah AD, Langenberg C, Rapsomaniki E, Denaxas S, Pujades-Rodriguez M, Gale CP, Deanfield J, Smeeth L, Timmis A, Hemingway H: Type 2 diabetes and incidence of cardiovascular diseases: a cohort study in 1 · 9 million people. Lancet Diabetes Endocrinol 2015, 3:105-13.
- [31]Piniés JA, González-Carril F, Arteagoitia JM, Irigoien I, Altzibar JM, Rodriguez-Murua JL, Echevarriarteun L: Sentinel Practice Network of the Basque Country: Development of a prediction model for fatal and non-fatal coronary heart disease and cardiovascular disease in patients with newly diagnosed type 2 diabetes mellitus: the Basque Country Prospective Complications and Mortality Study risk engine (BASCORE). Diabetologia 2014, 57:2324-33.
- [32]Willis A, Davies M, Yates T, Khunti K: Primary prevention of cardiovascular disease using validated risk scores: a systematic review. J R Soc Med 2012, 105:348-56.
- [33]Diabetes Strategies of the National Health System 2012. Update. Health 2012. Ministry of Health, Social Services and Equality. NIPO: 680-12-047-5. http://publicacionesoficiales.boe.es. (accesed date 07/10/2015)
- [34]Brindle P, Beswick A, Fahey T, Ebrahim S: Accuracy and impact of risk assessment in the primary prevention of cardiovascular disease: a systematic review. Heart 2006, 92:1752-9.
- [35]Cook NR: Use and misuse of the receiver operating characteristic curve in risk prediction. Circulation 2007, 115:928-35.