期刊论文详细信息
BMC Genomics
Immunomic, genomic and transcriptomic characterization of CT26 colorectal carcinoma
Ugur Sahin2  Özlem Türeci1  Sebastian Kreiter3  Mustafa Diken3  Claudia Paret3  Patrick Sorn3  Thomas Bukur3  Valesca Boisguerin2  Arbel D Tadmor3  Christian Bender3  Jos de Graaf3  Sebastian Boegel1  Martin Loewer3  John C Castle3 
[1] University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;BioNTech AG, Kupferbergterrasse 17-19, 55131 Mainz, Germany;TRON gGmbH - Translational Oncology, Johannes Gutenberg-University Medical Center gGmbH, Langenbeckstr. 1, Building 708, 55131 Mainz, Germany
关键词: Colorectal cancer;    Computational immunology;    Cancer models;    Immunotherapy;   
Others  :  1217769
DOI  :  10.1186/1471-2164-15-190
 received in 2013-11-02, accepted in 2014-02-21,  发布年份 2014
PDF
【 摘 要 】

Background

Tumor models are critical for our understanding of cancer and the development of cancer therapeutics. Here, we present an integrated map of the genome, transcriptome and immunome of an epithelial mouse tumor, the CT26 colon carcinoma cell line.

Results

We found that Kras is homozygously mutated at p.G12D, Apc and Tp53 are not mutated, and Cdkn2a is homozygously deleted. Proliferation and stem-cell markers, including Top2a, Birc5 (Survivin), Cldn6 and Mki67, are highly expressed while differentiation and top-crypt markers Muc2, Ms4a8a (MS4A8B) and Epcam are not. Myc, Trp53 (tp53), Mdm2, Hif1a, and Nras are highly expressed while Egfr and Flt1 are not. MHC class I but not MHC class II is expressed. Several known cancer-testis antigens are expressed, including Atad2, Cep55, and Pbk. The highest expressed gene is a mutated form of the mouse tumor antigen gp70. Of the 1,688 non-synonymous point variations, 154 are both in expressed genes and in peptides predicted to bind MHC and thus potential targets for immunotherapy development. Based on its molecular signature, we predicted that CT26 is refractory to anti-EGFR mAbs and sensitive to MEK and MET inhibitors, as have been previously reported.

Conclusions

CT26 cells share molecular features with aggressive, undifferentiated, refractory human colorectal carcinoma cells. As CT26 is one of the most extensively used syngeneic mouse tumor models, our data provide a map for the rationale design of mode-of-action studies for pre-clinical evaluation of targeted- and immunotherapies.

【 授权许可】

   
2014 Castle et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150708042846889.pdf 1917KB PDF download
Figure 5. 48KB Image download
Figure 4. 40KB Image download
Figure 3. 53KB Image download
Figure 2. 49KB Image download
Figure 1. 80KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Griswold DP, Corbett TH: A colon tumor model for anticancer agent evaluation. Cancer 1975, 36:2441-2444.
  • [2]van Houdt WJ, Hoogwater FJ, de Bruijn MT, Emmink BL, Nijkamp MW, Raats DA, van der Groep P, van Diest P, Borel Rinkes IH, Kranenburg O: Oncogenic KRAS desensitizes colorectal tumor cells to epidermal growth factor receptor inhibition and activation. Neoplasia 2010, 12:443-452.
  • [3]Yeh JJ, Routh ED, Rubinas T, Peacock J, Martin TD, Shen XJ, Sandler RS, Kim HJ, Keku TO, Der CJ: KRAS/BRAF mutation status and ERK1/2 activation as biomarkers for MEK1/2 inhibitor therapy in colorectal cancer. Mol Cancer Ther 2009, 8:834-843.
  • [4]Ma PC, Schaefer E, Christensen JG, Salgia R: A selective small molecule c-MET Inhibitor, PHA665752, cooperates with rapamycin. Clin Cancer Res 2005, 11:2312-2319.
  • [5]Zhang B, Halder SK, Zhang S, Datta PK: Targeting transforming growth factor-beta signaling in liver metastasis of colon cancer. Cancer Lett 2009, 277:114-120.
  • [6]Dalerba P, Kalisky T, Sahoo D, Rajendran PS, Rothenberg ME, Leyrat AA, Sim S, Okamoto J, Johnston DM, Qian D, Zabala M, Bueno J, Neff NF, Wang J, Shelton AA, Visser B, Hisamori S, Shimono Y, van de Wetering M, Clevers H, Clarke MF, Quake SR: Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nat Biotechnol 2011, 29:1120-1127.
  • [7]De Sousa EMF, Wang X, Jansen M, Fessler E, Trinh A, de Rooij LP, de Jong JH, de Boer OJ, van Leersum R, Bijlsma MF, Rodermond H, van der Heijden M, van Noesel CJ, Tuynman JB, Dekker E, Markowetz F, Medema JP, Vermeulen L: Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. Nat Med 2013, 19:614-618.
  • [8]Sadanandam A, Lyssiotis CA, Homicsko K, Collisson EA, Gibb WJ, Wullschleger S, Ostos LC, Lannon WA, Grotzinger C, Del Rio M, Lhermitte B, Olshen AB, Wiedenmann B, Cantley LC, Gray JW, Hanahan D: A colorectal cancer classification system that associates cellular phenotype and responses to therapy. Nat Med 2013, 19:619-625.
  • [9]Marisa L, de Reynies A, Duval A, Selves J, Gaub MP, Vescovo L, Etienne-Grimaldi MC, Schiappa R, Guenot D, Ayadi M, Kirzin S, Chazal M, Fléjou JF, Benchimol D, Berger A, Lagarde A, Pencreach E, Piard F, Elias D, Parc Y, Olschwang S, Milano G, Laurent-Puig P, Boige V: Gene expression classification of colon cancer into molecular subtypes: characterization, validation, and prognostic value. PLoS Med 2013, 10:e1001453.
  • [10]Senovilla L, Vitale I, Martins I, Tailler M, Pailleret C, Michaud M, Galluzzi L, Adjemian S, Kepp O, Niso-Santano M, Shen S, Mariño G, Criollo A, Boilève A, Job B, Ladoire S, Ghiringhelli F, Sistigu A, Yamazaki T, Rello-Varona S, Locher C, Poirier-Colame V, Talbot M, Valent A, Berardinelli F, Antoccia A, Ciccosanti F, Fimia GM, Piacentini M, Fueyo A, et al.: An immunosurveillance mechanism controls cancer cell ploidy. Science 2012, 337:1678-1684.
  • [11]Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A, Borresen-Dale AL, Børresen-Dale AL, Boyault S, Burkhardt B, Butler AP, Caldas C, Davies HR, Desmedt C, Eils R, Eyfjörd JE, Foekens JA, Greaves M, Hosoda F, Hutter B, Ilicic T, Imbeaud S, Imielinski M, Jäger N, Jones DT, Jones D, Australian Pancreatic Cancer Genome Initiative; ICGC Breast Cancer Consortium; ICGC MMML-Seq Consortium; ICGC PedBrain, et al.: Signatures of mutational processes in human cancer. Nature 2013, 500:415-421.
  • [12]Cancer Genome Atlas N: Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012, 487:330-337.
  • [13]Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N, Szabo S, Buckhaults P, Farrell C, Meeh P, Markowitz SD, Willis J, Dawson D, Willson JK, Gazdar AF, Hartigan J, Wu L, Liu C, Parmigiani G, Park BH, Bachman KE, Papadopoulos N, Vogelstein B, Kinzler KW, Velculescu VE: The consensus coding sequences of human breast and colorectal cancers. Science 2006, 314:268-274.
  • [14]Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ, Shen D, Boca SM, Barber T, Ptak J, Silliman N, Szabo S, Dezso Z, Ustyanksky V, Nikolskaya T, Nikolsky Y, Karchin R, Wilson PA, Kaminker JS, Zhang Z, Croshaw R, Willis J, Dawson D, Shipitsin M, Willson JK, Sukumar S, Polyak K, Park BH, Pethiyagoda CL, Pant PV, et al.: The genomic landscapes of human breast and colorectal cancers. Science 2007, 318:1108-1113.
  • [15]Maurer T, Garrenton LS, Oh A, Pitts K, Anderson DJ, Skelton NJ, Fauber BP, Pan B, Malek S, Stokoe D, Ludlam MJ, Bowman KK, Wu J, Giannetti AM, Starovasnik MA, Mellman I, Jackson PK, Rudolph J, Wang W, Fang G: Small-molecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity. Proc Natl Acad Sci USA 2012, 109:5299-5304.
  • [16]Kambara T, Simms LA, Whitehall VL, Spring KJ, Wynter CV, Walsh MD, Barker MA, Arnold S, McGivern A, Matsubara N, Tanaka N, Higuchi T, Young J, Jass JR, Leggett BA: BRAF mutation is associated with DNA methylation in serrated polyps and cancers of the colorectum. Gut 2004, 53:1137-1144.
  • [17]Eguchi T, Takaki T, Itadani H, Kotani H: RB silencing compromises the DNA damage-induced G2/M checkpoint and causes deregulated expression of the ECT2 oncogene. Oncogene 2007, 26:509-520.
  • [18]Tiwari N, Tiwari VK, Waldmeier L, Balwierz PJ, Arnold P, Pachkov M, Meyer-Schaller N, Schubeler D, van Nimwegen E, Christofori G: Sox4 is a master regulator of epithelial-mesenchymal transition by controlling ezh2 expression and epigenetic reprogramming. Cancer Cell 2013, 23:768-783.
  • [19]Tong ZT, Cai MY, Wang XG, Kong LL, Mai SJ, Liu YH, Zhang HB, Liao YJ, Zheng F, Zhu W, Liu TH, Bian XW, Guan XY, Lin MC, Zeng MS, Zeng YX, Kung HF, Xie D: EZH2 supports nasopharyngeal carcinoma cell aggressiveness by forming a co-repressor complex with HDAC1/HDAC2 and Snail to inhibit E-cadherin. Oncogene 2012, 31:583-594.
  • [20]Bullock MD, Bruce A, Sreekumar R, Curtis N, Cheung T, Reading I, Primrose JN, Ottensmeier C, Packham GK, Thomas G, Mirnezami AH: FOXO3 expression during colorectal cancer progression: biomarker potential reflects a tumour suppressor role. Br J Cancer 2013, 109:387-394.
  • [21]Winnepenninckx V, Lazar V, Michiels S, Dessen P, Stas M, Alonso SR, Avril MF, Ortiz Romero PL, Robert T, Balacescu O, Eggermont AM, Lenoir G, Sarasin A, Tursz T, van den Oord JJ, Spatz A, Melanoma Group of the European Organization for Research and Treatment of Cancer: Gene expression profiling of primary cutaneous melanoma and clinical outcome. J Natl Cancer Inst 2006, 98:472-482.
  • [22]Michel J, Schonhaar K, Schledzewski K, Gkaniatsou C, Sticht C, Kellert B, Lasitschka F, Geraud C, Goerdt S, Schmieder A: Identification of the novel differentiation marker MS4A8B and its murine homolog MS4A8A in colonic epithelial cells lost during neoplastic transformation in human colon. Cell Death Dis 2013, 4:e469.
  • [23]Furth EE, Li J, Purev E, Solomon AC, Rogler G, Mick R, Putt M, Zhang T, Somasundaram R, Swoboda R, Herlyn D: Serum antibodies to EpCAM in healthy donors but not ulcerative colitis patients. Cancer Immunol Immunother 2006, 55:528-537.
  • [24]Thiery JP: Epithelial-mesenchymal transitions in tumour progression. Nature reviews Cancer 2002, 2:442-454.
  • [25]de Sousa EMF, Colak S, Buikhuisen J, Koster J, Cameron K, de Jong JH, Tuynman JB, Prasetyanti PR, Fessler E, van den Bergh SP, Rodermond H, Dekker E, van der Loos CM, Pals ST, van de Vijver MJ, Versteeg R, Richel DJ, Vermeulen L, Medema JP: Methylation of cancer-stem-cell-associated Wnt target genes predicts poor prognosis in colorectal cancer patients. Cell Stem Cell 2011, 9:476-485.
  • [26]Gregorieff A, Clevers H: Wnt signaling in the intestinal epithelium: from endoderm to cancer. Genes Dev 2005, 19:877-890.
  • [27]Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ, Clevers H: Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007, 449:1003-1007.
  • [28]Jordan KR, McMahan RH, Kemmler CB, Kappler JW, Slansky JE: Peptide vaccines prevent tumor growth by activating T cells that respond to native tumor antigens. Proc Natl Acad Sci USA 2010, 107:4652-4657.
  • [29]McCubrey J, Risser R: Genetic interactions in the spontaneous production of endogenous murine leukemia virus in low leukemic mouse strains. J Exp Med 1982, 156:337-349.
  • [30]McWilliams JA, Sullivan RT, Jordan KR, McMahan RH, Kemmler CB, McDuffie M, Slansky JE: Age-dependent tolerance to an endogenous tumor-associated antigen. Vaccine 2008, 26:1863-1873.
  • [31]DeLeo AB, Shiku H, Takahashi T, John M, Old LJ: Cell surface antigens of chemically induced sarcomas of the mouse. I. Murine leukemia virus-related antigens and alloantigens on cultured fibroblasts and sarcoma cells: description of a unique antigen on BALB/c Meth A sarcoma. J Exp Med 1977, 146:720-734.
  • [32]Hofmann O, Caballero OL, Stevenson BJ, Chen YT, Cohen T, Chua R, Maher CA, Panji S, Schaefer U, Kruger A, Lehvaslaiho M, Carninci P, Hayashizaki Y, Jongeneel CV, Simpson AJ, Old LJ, Hide W: Genome-wide analysis of cancer/testis gene expression. Proc Natl Acad Sci USA 2008, 105:20422-20427.
  • [33]Wolfel T, Hauer M, Schneider J, Serrano M, Wolfel C, Klehmann-Hieb E, De PE, Hankeln T, Buschenfelde KH M z, Beach D: A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 1995, 269:1281-1284.
  • [34]Castle JC, Kreiter S, Diekmann J, Lower M, van de Roemer N, de Graaf J, Selmi A, Diken M, Boegel S, Paret C, Koslowski M, Kuhn AN, Britten CM, Huber C, Türeci O, Sahin U: Exploiting the mutanome for tumor vaccination. Cancer Res 2012, 72:1081-1091.
  • [35]Kim Y, Sette A, Peters B: Applications for T-cell epitope queries and tools in the immune epitope database and analysis resource. J Immunol Methods 2011, 374:62-69.
  • [36]Segal NH, Parsons DW, Peggs KS, Velculescu V, Kinzler KW, Vogelstein B, Allison JP: Epitope landscape in breast and colorectal cancer. Cancer Res 2008, 68:889-892.
  • [37]Bellon SF, Kaplan-Lefko P, Yang Y, Zhang Y, Moriguchi J, Rex K, Johnson CW, Rose PE, Long AM, O’Connor AB, Gu Y, Coxon A, Kim TS, Tasker A, Burgess TL, Dussault I: c-Met inhibitors with novel binding mode show activity against several hereditary papillary renal cell carcinoma-related mutations. J Biol Chem 2008, 283:2675-2683.
  • [38]Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25:1754-1760.
  • [39]Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009, 10:R25. BioMed Central Full Text
  • [40]Castle JC, Biery M, Bouzek H, Xie T, Chen R, Misura K, Jackson S, Armour CD, Johnson JM, Rohl CA, Raymond CK: DNA copy number, including telomeres and mitochondria, assayed using next-generation sequencing. BMC Genomics 2010, 11:244. BioMed Central Full Text
  • [41]Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, Gabriel S, Meyerson M, Lander ES, Getz G: Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol 2013, 31:213-219.
  • [42]Larson DE, Harris CC, Chen K, Koboldt DC, Abbott TE, Dooling DJ, Ley TJ, Mardis ER, Wilson RK, Ding L: SomaticSniper: identification of somatic point mutations in whole genome sequencing data. Bioinformatics 2012, 28:311-317.
  • [43]Consortium EP: A user’s guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol 2011, 9:e1001046.
  • [44]Joshi-Tope G, Gillespie M, Vastrik I, D’Eustachio P, Schmidt E, de Bono B, Jassal B, Gopinath GR, Wu GR, Matthews L, Lewis S, Birney E, Stein L: Reactome: a knowledgebase of biological pathways. Nucleic Acids Res 2005, 33:D428-D432.
  • [45]Subramanian A, Kuehn H, Gould J, Tamayo P, Mesirov JP: GSEA-P: a desktop application for gene set enrichment analysis. Bioinformatics 2007, 23:3251-3253.
  • [46]Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, Fridman WH, Pages F, Trajanoski Z, Galon J: ClueGO: a cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 2009, 25:1091-1093.
  • [47]Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP: GenePattern 2.0. Nat Genet 2006, 38:500-501.
  • [48]Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005, 102:15545-15550.
  • [49]Coordinators NR: Database resources of the national center for biotechnology information. Nucleic Acids Res 2013, 41:D8-D20.
  • [50]Almeida LG, Sakabe NJ: CTdatabase: a knowledge-base of high-throughput and curated data on cancer-testis antigens. Nucleic Acids Res 2009, 37:D816-D819.
  • [51]Boegel S, Lower M, Schafer M, Bukur T, de Graaf J, Boisguerin V, Tureci O, Diken M, Castle JC, Sahin U: HLA typing from RNA-Seq sequence reads. Genome Med 2013, 4:102.
  文献评价指标  
  下载次数:56次 浏览次数:2次