期刊论文详细信息
BMC Systems Biology
An algebra-based method for inferring gene regulatory networks
Reinhard Laubenbacher5  John McGee4  Luis David Garcia-Puente2  Abdul Jarrah3  Paola Vera-Licona1 
[1] Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA;Department of Mathematics and Statistics, Sam Houston State University, Huntsville, TX 77341-2206, USA;Department of Mathematics and Statistics, American University of Sharjah, Sharjah, UAE;Mathematics and Statistics Department, Radford University, Radford, VA 24142, USA;Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
关键词: data noise;    time series data;    DNA microarray data;    evolutionary computation;    algebraic dynamic models;    polynomial dynamical systems;    gene regulatory networks;    molecular networks;    Boolean networks;    network inference;    Reverse-engineering;   
Others  :  866615
DOI  :  10.1186/1752-0509-8-37
 received in 2013-08-12, accepted in 2014-03-06,  发布年份 2014
PDF
【 摘 要 】

Background

The inference of gene regulatory networks (GRNs) from experimental observations is at the heart of systems biology. This includes the inference of both the network topology and its dynamics. While there are many algorithms available to infer the network topology from experimental data, less emphasis has been placed on methods that infer network dynamics. Furthermore, since the network inference problem is typically underdetermined, it is essential to have the option of incorporating into the inference process, prior knowledge about the network, along with an effective description of the search space of dynamic models. Finally, it is also important to have an understanding of how a given inference method is affected by experimental and other noise in the data used.

Results

This paper contains a novel inference algorithm using the algebraic framework of Boolean polynomial dynamical systems (BPDS), meeting all these requirements. The algorithm takes as input time series data, including those from network perturbations, such as knock-out mutant strains and RNAi experiments. It allows for the incorporation of prior biological knowledge while being robust to significant levels of noise in the data used for inference. It uses an evolutionary algorithm for local optimization with an encoding of the mathematical models as BPDS. The BPDS framework allows an effective representation of the search space for algebraic dynamic models that improves computational performance. The algorithm is validated with both simulated and experimental microarray expression profile data. Robustness to noise is tested using a published mathematical model of the segment polarity gene network in Drosophila melanogaster. Benchmarking of the algorithm is done by comparison with a spectrum of state-of-the-art network inference methods on data from the synthetic IRMA network to demonstrate that our method has good precision and recall for the network reconstruction task, while also predicting several of the dynamic patterns present in the network.

Conclusions

Boolean polynomial dynamical systems provide a powerful modeling framework for the reverse engineering of gene regulatory networks, that enables a rich mathematical structure on the model search space. A C++ implementation of the method, distributed under LPGL license, is available, together with the source code, at http://www.paola-vera-licona.net/Software/EARevEng/REACT.html webcite.

【 授权许可】

   
2014 Vera-Licona et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140727075821842.pdf 3293KB PDF download
93KB Image download
49KB Image download
85KB Image download
50KB Image download
42KB Image download
【 图 表 】

【 参考文献 】
  • [1]Lahdesmaki H, Shmulevich I: On learning gene regulatory networks under the boolean network odel. Machine Learn 2008, 71:185-217. Springer Netherlands Publishers
  • [2]Chemmangattuvalappil N, Task K, Banerjee I: An integer optimization algorithm for robust identification of non-linear gene regulatory networks. BMC Syst Biol 2013, 2(6):119.
  • [3]Bonneau R: Learning biological networks: from modules to dynamics. Nat Chem Biol 2008, 4(11):658-664.
  • [4]Laubenbacher R, Stigler B: A computational algebra approach to the reverse-engineering of gene regulatory networks. J Theor Biol 2004, 229:523-537.
  • [5]Madar A, Greenfield A: DREAM3: network inference using dynamic context likelihood of relatedness and the inferelator. PLoS One 2004, 5(3):9803.
  • [6]Porreca R, Cinquemani E, Lygeros J, Ferrari-Trecate G: Identification of genetic network dynamics with unate structure. Bioinformatics 2010, 26(9):1239-12345.
  • [7]Hempel S, Koseska A, Nikoloski Z, Kurths J: Unraveling gene regulatory networks from time-resolved gene expression data - a measures comparison study. BMC Bioinformatics 2011, 12:292. BioMed Central Full Text
  • [8]Jaynes E: Prior information and ambiguity in inverse problems. SIAM AMS Proc 1984, 14:151-166.
  • [9]Wahde M, Hertz J: Modeling genetic regulatory dynamics in neural development. J Comput Biol 2001, 8:429-442.
  • [10]Yeung MKS, Tegner J, Collins JJ: Reverse engineering gene networks using singular value decomposition and robust regression. Proc Natl Acad Sci 2002, 99(9):6163-6168.
  • [11]Gardner TS, di Bernardo DX, Collins JJ: Inferring genetic networks and identifying compound mode of action via expression profiling. Science 2003, 301:102-105.
  • [12]Marbach D: Evolutionary Reverse Engineering of Gene Networks . Ph.D. thesis: Ecole Polytechnique Federale de Laussane; 2009.
  • [13]Saez-Rodriguez J, Alexopoulos LG, Epperlein J, Samaga R, Lauffenburger DA, Klamt S, Sorger PK: Discrete logical modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction. Mol Sys Biol 2009, 5:331.
  • [14]Greenfield A, Madar A, Ostrer H, Bonneau R: DREAM4: Combining genetic and dynamic information to identify biological networks and dynamical models. PLoS ONE 2010, 5(10):e13397.
  • [15]Lo K, Raftery AE, Dombek KM, Zhu J, Schadt EE, Bumgarner RE, Yeung KY: (2012). Integrating external biological knowledge in the construction of regulatory networks from time-series expression data. BMC Syst Biol 2012, 6:101. BioMed Central Full Text
  • [16]Wang SQ, Li HX: Bayesian inference based modelling for gene transcriptional dynamics by integrating multiple source of knowledge. BMC Syst Biol 2012, 6(Suppl 1):S3. BioMed Central Full Text
  • [17]Xiao Y, Dougherty E: The impact of function perturbations in Boolean networks. Bioinformatics 2007, 23(10):1265-1273.
  • [18]Yu J, Smith J, Hartemink A, Jarvis ED: Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics 2004, 20(18):3594-3603.
  • [19]Jarrah A, Laubenbacher R, Stigler B, Stillman M: Reverse engineering of polynomial dynamical systems. Adv Appl Math 2007, 39(4):477-489.
  • [20]Friedman N, Linial M, Nachman I, Pe’er D: Using Bayesian networks to analyze expression data. J Comput Biol 2000, 7:601-620.
  • [21]Shmulevich I, Dougherty ER, Kim S, Zhang W: Probabilistic Boolean networks: a rule based uncertainty model for gene regulatory networks. Bioinformatics 2002, 18:261-274.
  • [22]Ferrazzi F, Sebastiani P, Ramoni M, Bellazzi R: Bayesian approaches to reverse engineer cellular systems: a simulation study on nonlinear Gaussian networks. BMC Bioinformatics 2007, 8(Suppl 5):S2. BioMed Central Full Text
  • [23]Zhao W, Serpedin E, Dougherty ER: Inferring connectivity of genetic regulatory networks using information-theoretic criteria. Comput Biol and Bioinformatics, IEEE/ACM Trans 2008, 5(2):262-274.
  • [24]Chaouiya C, Remy E, Thieffry D: Petri net modelling of biological regulatory networks. Jo Discrete Algo 2008, 6(2):165-177.
  • [25]Dimitrova Es, Garcia-Puente LD, Hinkelmann F, Jarrah AS, Laubenbacher R, Stigler B, Stillman M, Vera-Licona P: Parameter estimation for boolean models of biological networks. J Theor Comput Science 2011, 412:26.
  • [26]Noman N, Iba H: Inference of genetic networks using S-system: information criteria for model selection. In GECCO ’06: Proceedings of the 8th annual conference on Genetic and evolutionary computation . New York, NY, USA: ACM; 2006:263-270.
  • [27]Ferrazzi F, Magni P, Sacchi L, Nuzzo A, Petrovic U, Bellazzi R: Inferring gene regulatory networks by integrating static and dynamic data. Int J Med Info 2007, 76(Supplement 3):S462-S475.
  • [28]Xu R, Venayagamoorthy GK, Donald C, Wunsch I: Modeling of gene regulatory networks with hybrid differential evolution and particle swarm optimization. Neural Netw 2007, 20(8):917-927.
  • [29]Lee WP, Yang KC: A clustering-based approach for inferring recurrent neural networks as gene regulatory networks. Neurocomputation 2008, 71:600-610.
  • [30]Kotte O, Heinemann M: A divide-and-conquer approach to analyze underdetermined biochemical models. Bioinformatics 2009, 25(4):519-525.
  • [31]Bauer DC, Bailey TL: Optimizing static thermodynamic models of transcriptional regulation. Bioinformatics 2009, 25(13):1640-1646.
  • [32]Haury AC, Mordelet F, Vera-Licona P, Vert JP: TIGRESS: trustful inference of gene regulation using stability selection. BMC Syst Biol 2012, 6(1):145. BioMed Central Full Text
  • [33]Stolovitzky G, Monroe D, Califano A: Dialogue on reverse-engineering assessment and methods: the DREAM of high-throughput pathway inference. Ann New York Acad Sci 2007, 1115:1-22.
  • [34]Stolovitzky G, Prill RJ, Califano A: Lessons from the DREAM2 challenges: a community effort to assess biological network inference. Ann New York Acad Sci 2009, 1158(37):159-195.
  • [35]Marbach D, Costello J, Kuffner R, Vega N, Pril l R, Camacho D, Allison K, Kellis M, Collins J, Stolovitzky G: The DREAM5 Consortium. Wisdom of crowds for robust gene network inference. Nat Methods 2012, 9(8):796-804.
  • [36]Cantone I, Marucci L, Iorio F, Ricci MA, Belcastro V, Bansal M, Santini S, di Bernardo M, di Bernardo D, Cosma MP: A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches. Cell 2009, 137(1):172-181.
  • [37]Vera-Licona P: Algorithms for modeling and simulation of biological systems: applications to gene regulatory networks . Ph.D. thesis: Virginia Polytechnic Institute and State University; 2007.
  • [38]Stigler B: Polynomial dynamical systems in systems biology. In AMS 2006 Proceedings of Symposia in Applied Mathematics . Edited by Laubenbacher R. American Mathematical Society, Providence, RI,; 2006:59-84.
  • [39]Garg A, Di Cara A, Xenarios I, Mendoza L, DeMicheli G: Synchronous versus asynchronous modeling of gene regulatory networks. Bioinformatics 2008, 1:306-312.
  • [40]Albert R, Othmer H: The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. J Theor Biol 2003, 223:1-18.
  • [41]Albert I, Thakar J, Li S, Zhang R, Albert R: Boolean network simulations for life scientists. Source Code Biol Med 2008, 3:16. BioMed Central Full Text
  • [42]Boettiger AN, Levine M: Synchronous and stochastic patterns of gene activation in the drosophila embryo. Science 2009, 325:471-473.
  • [43]Walker KA, Miller VL: Synchronous gene expression of the Yersinia enterocolitica Ysa Type III secretion system and its effectors. J Bacteriol 2009, 191(6):1816-1826.
  • [44]Kervizic G, Corcos L: Dynamical modeling of the cholesterol regulatory pathway with Boolean networks. IBMC Syst Biol 2008, 2:99. BioMed Central Full Text
  • [45]Chaves M, Albert R, Sontag ED: Robustness and fragility of Boolean models for genetic regulatory networks. J Theor Biol 2005, 235(3):431-449.
  • [46]Garg A, Xenarios I, Mendoza L, DeMicheli G: An Efficient method for dynamic analysis of gene regulatory networks. In RECOMB 2007 . Edited by Speed T, Huang H. Springer-Verlag Berlin, Heidelberg; 2007:62-76.
  • [47]Onn S, Thomas R, Babson E: The Hilbert zonotope and a polynomial time algorithm for universal Gröbner bases. Adv Appl Math 2003, 30:529-544.
  • [48]Mitchell M: An Introduction to Genetic Algorithms . Cambridge Massachusetts: The MIT Press; 1999.
  • [49]Fogel DB: Introduction to Evolutionary Computation. In Evolutionary Computation 1: Basic Algorithms and Operators . Edited by Back T, Fogel DB, Michalewicz Z. Institute of Physics Publishing Bristol and Philadelphia: Philadelphia, PA; 2000:1-3.
  • [50]Sirbu A: Gene regulatory network modelling with evolutionary algorithms -an integrative approach. PhD thesis. Dublin City University, 2011
  • [51]Pal S, Bandyopadhyay S, Ray S: Evolutionary computation in bioinformatics: a review. Systems, Man, and Cybernetics, Part C: Applications and Reviews. IEEE Trans 2006, 36(5):601-615.
  • [52]Spieth C, Worzischek R, Streichert F, Supper J, Speer N, Zell A: Comparing evolutionary algorithms on the problem of network inference. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2006). ACM Press, New York, NY, 2006, 305–306
  • [53]Sirbu A, Ruskin HJ, Crane M: Comparison of evolutionary algorithms in gene regulatory network model inference. BMC Bioinformatics 2010, 11:59. BioMed Central Full Text
  • [54]Eiben AE, Smith JE: Introduction to evolutionary computing. In Natural Computing Series . Berlin: Springer; 2003.
  • [55]Schwarz G: Estimating the dimension of a model. Ann Stat 1978, 6(2):461-466.
  • [56]Akaike H: Information theory and an extension of the maximum likelihood principle. In Proc 2nd Int Symp Information Theory . Edited by Petrov BN, Csaki F. Budapest: Akademiai Kiado; 1973:267-281.
  • [57]Olsson G, Sandberg A, Dahlblom O: On latin hypercube sampling for structural reliability analysis. Struct Safety 2003, 25(1):47-68.
  • [58]Kimura S, Ide K, Kashihara A, Kano M, Hatakeyama M, Masui R, Nakagawa N, Yokoyama S, Kuramitsu S, Konagaya A: Inference of S-system models of genetic networks using a cooperative coevolutionary algorithm. Bioinformatics 2005, 21:1154-1163.
  • [59]Tsai KY, Wang FS: Evolutionary optimization with data collocation for reverse engineering of biological networks. Bioinformatics 2005, 21(7):1180-1188.
  • [60]Swain M, Hunniford etal.: Reverse engineering gene regulatory networks using evolutionary algorithms and grid computing. Clinical Monitoring Comput 2005, 19:329-337.
  • [61]Bevilacqua V, Mastronardi G: Bayesian gene regulatory network inference optimization by means of genetic algorithms. J Universal Comput Sci 2009, 15(4):826-839.
  • [62]Dasgupta B, Vera-Licona P, Sontag E: Reverse engineering of molecular networks from a common combinatorial approach. In Algorithms in Computational Molecular Biology . Edited by Eiloumi M, Zomaya AY. New York: Wiley; 2011.
  • [63]Dimitrova E, Vera-Licona P, McGee J, Laubenbacher R: Discretization of time series data. J Comput Biol 2010, 17(6):853-868.
  • [64]Zoppoli P, Morganella S, Ceccarelli M: TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach. BMC Bioinformatics 2010, 11:154. BioMed Central Full Text
  • [65]Zou C, Ladroue C, Guo S, Feng J: Identifying interactions in the time and frequency domains in local and global networks - A Granger Causality Approach. BMC Bioinformatics 2010, 11:337. BioMed Central Full Text
  • [66]Summer G, Perkins T: Functional data analysis for identifying nonlinear models of gene regulatory networks. BMC Genomics 2011, 11(Suppl 4):S18.
  • [67]Bansal M, di Bernardo D: Inference of gene networks from temporal gene expression profiles. IET, Syst Biol 2007, 1:306-312.
  • [68]Weng L, Dai H, Zhan Y, He Y, Stepaniants S, Bassett D: Rosetta error model for gene expression analysis. Bioinformatics 2006, 22(9):1111-1121.
  • [69]Klebanov L, Yakovlev A: How high is the level of technical noise in microarray data. Biology Direct 2007, 2:9-15. BioMed Central Full Text
  • [70]Chen J, Hsueh H, Delongchamp R, Lin C, Tsai C: Reproducibility of microarray data: a further analysis of microarray quality control (MAQC) data. BMC Bioinformatics 2007, 8:412-418. BioMed Central Full Text
  文献评价指标  
  下载次数:65次 浏览次数:21次