期刊论文详细信息
BMC Genomics
Label-free proteomic analysis to confirm the predicted proteome of Corynebacterium pseudotuberculosis under nitrosative stress mediated by nitric oxide
Vasco Azevedo4  Artur Silva1  Anderson Miyoshi4  Yves Le Loir3  Gustavo HMF Souza2  Edson L Folador4  Isabela FS Bastos4  Siomar C Soares4  Rodrigo D Carvalho4  Wanderson M Silva3 
[1]Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
[2]Waters Corporation, MS Applications and Development Laboratory, São Paulo, Brazil
[3]Agrocampus Ouest, UMR1253 STLO, Rennes 35042, France
[4]Depto de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
关键词: Nitric oxide;    Nitrosative stress;    Label-free proteomics;    Proteomics;    Caseous lymphadenitis;    Corynebacterium pseudotuberculosis;   
Others  :  1089822
DOI  :  10.1186/1471-2164-15-1065
 received in 2014-09-04, accepted in 2014-11-24,  发布年份 2014
PDF
【 摘 要 】

Background

Corynebacterium pseudotuberculosis biovar ovis is a facultative intracellular pathogen, and the etiological agent of caseous lymphadenitis in small ruminants. During the infection process, the bacterium is subjected to several stress conditions, including nitrosative stress, which is caused by nitric oxide (NO). In silico analysis of the genome of C. pseudotuberculosis ovis 1002 predicted several genes that could influence the resistance of this pathogen to nitrosative stress. Here, we applied high-throughput proteomics using high definition mass spectrometry to characterize the functional genome of C. pseudotuberculosis ovis 1002 in the presence of NO-donor Diethylenetriamine/nitric oxide adduct (DETA/NO), with the aim of identifying proteins involved in nitrosative stress resistance.

Results

We characterized 835 proteins, representing approximately 41% of the predicted proteome of C. pseudotuberculosis ovis 1002, following exposure to nitrosative stress. In total, 102 proteins were exclusive to the proteome of DETA/NO-induced cells, and a further 58 proteins were differentially regulated between the DETA/NO and control conditions. An interactomic analysis of the differential proteome of C. pseudotuberculosis in response to nitrosative stress was also performed. Our proteomic data set suggested the activation of both a general stress response and a specific nitrosative stress response, as well as changes in proteins involved in cellular metabolism, detoxification, transcriptional regulation, and DNA synthesis and repair.

Conclusions

Our proteomic analysis validated previously-determined in silico data for C. pseudotuberculosis ovis 1002. In addition, proteomic screening performed in the presence of NO enabled the identification of a set of factors that can influence the resistance and survival of C. pseudotuberculosis during exposure to nitrosative stress.

【 授权许可】

   
2014 Silva et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150128152212245.pdf 1635KB PDF download
Figure 6. 63KB Image download
Figure 5. 111KB Image download
Figure 4. 93KB Image download
Figure 3. 67KB Image download
Figure 1. 44KB Image download
Figure 1. 62KB Image download
【 图 表 】

Figure 1.

Figure 1.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Dorella FA, Pacheco LG, Oliveira SC, Miyoshi A, Azevedo V: Corynebacterium pseudotuberculosis: microbiology, biochemical properties, pathogenesis and molecular studies of virulence. Vet Res 2006, 37:201-218.
  • [2]Baird GJ, Fontaine MC: Corynebacterium pseudotuberculosis and its role in ovine caseous lymphadenitis. J Comp Pathol 2007, 137:179-210.
  • [3]Hodgson AL, Bird P, Nisbet IT: Cloning, nucleotide sequence, and expression in Escherichia coli of the phospholipase D gene from Corynebacterium pseudotuberculosis. J Bacteriol 1990, 172:1256-1261.
  • [4]Hard GC: Comparative toxic effect of the surface lipid of Corynebacterium ovis on peritoneal macrophages. Infect Immun 1975, 12:1439-1449.
  • [5]Billington SJ, Esmay PA, Songer JG, Jost BH: Identification and role in virulence of putative iron acquisition genes from Corynebacterium pseudotuberculosis. J Bacteriol 2002, 180:3233-3236.
  • [6]Ruiz JC, D'Afonseca V, Silva A, Ali A, Pinto AC, Santos AR, Rocha AA, Lopes DO, Dorella FA, Pacheco LG, Costa MP, Turk MZ, Seyffert N, Moraes PM, Soares SC, Almeida SS, Castro TL, Abreu VA, Trost E, Baumbach J, Tauch A, Schneider MP, McCulloch J, Cerdeira LT, Ramos RT, Zerlotini A, Dominitini A, Resende DM, Coser EM, Oliveira LM, et al.: Evidence for reductive genome evolution and lateral acquisition of virulence functions in two Corynebacterium pseudotuberculosis strains. PLoS One 2011, 18:e18551.
  • [7]Soares SC, Silva A, Trost E, Blom J, Ramos R, Carneiro A, Ali A, Santos AR, Pinto AC, Diniz C, Barbosa EG, Dorella FA, Aburjaile F, Rocha FS, Nascimento KK, Guimarães LC, Almeida S, Hassan SS, Bakhtiar SM, Pereira UP, Abreu VA, Schneider MP, Miyoshi A, Tauch A, Azevedo V: The pan-genome of the animal pathogen Corynebacterium pseudotuberculosis reveals differences in genome plasticity between the biovar ovis and equi strains. PLoS One 2013, 8:e53818.
  • [8]Pinto AC, de Sá PH, Ramos RT, Barbosa S, Barbosa HP, Ribeiro AC, Silva WM, Rocha FS, Santana MP, de Paula Castro TL, Miyoshi A, Schneider MP, Silva A, Azevedo V: Differential transcriptional profile of Corynebacterium pseudotuberculosis in response to abiotic stresses. BMC Genomics 2014, 9:14.
  • [9]Marletta MA: Nitric oxide synthase: aspects concerning structure and catalysis. Cell 1994, 23:927-930.
  • [10]Griffith OW, Stueh DJ: Nitric oxide synthases: properties and catalytic mechanism. Annu Rev Physiol 1995, 57:707-736.
  • [11]Nathan C, Shiloh MU: Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci USA 2000, 1:8841-8848.
  • [12]Singh A, Guidry L, Narasimhulu KV, Mai D, Trombley J, Redding KE, Giles GI, Lancaster JR Jr, Steyn AJ: Mycobacterium tuberculosis WhiB3 responds to O2 and nitric oxide via its [4Fe-4S] cluster and is essential for nutrient starvation survival. Proc Natl Acad Sci USA 2007, 10:11562-11567.
  • [13]Ehrt S, Schnappinger D: Mycobacterial survival strategies in the phagosome: defence against host stresses. Cell Microbiol 2009, 11:1170-1178.
  • [14]Lu J, Holmgren A: The thioredoxin antioxidant system. Free Radic Biol Med 2013, 8:75-87.
  • [15]Pacheco LG, Castro TL, Carvalho RD, Moraes PM, Dorella FA, Carvalho NB, Slade SE, Scrivens JH, Feelisch M, Meyer R, Miyoshi A, Oliveira SC, Dowson CG, Azevedo V: A role for sigma factor σ(E) in Corynebacterium pseudotuberculosis resistance to nitric oxide/peroxide stress. Front Microbiol 2012, 3:126.
  • [16]Moura-Costa LF, Paule BJA, Freire SM, Nascimento I, Schaer R, Regis LF, Vale VLC, Matos DP, Bahia RC, Carminati R, Meyer R: Chemically defined synthetic medium for Corynebacterium pseudotuberculosis culture. Rev Bras Saúde Prod An 2002, 3:1-9.
  • [17]Silva JC, Gorenstein MV, Li GZ, Vissers JP, Geromanos SJ: Absolute quantification of proteins by LC/MSE: a virtue of parallel MS acquisition. Mol Cell Proteomics 2006, 5:144-156.
  • [18]Gilar M, Olivova P, Daly AE, Gebler JC: Two-dimensional separation of peptides using RP-RP-HPLC system with different pH in first and second separation dimensions. J Sep Sci 2005, 28:1694-1703.
  • [19]Silva JC, Denny R, Dorschel CA, Gorenstein M, Kass IJ, Li GZ, McKenna T, Nold MJ, Richardson K, Young P, Geromanos S: Quantitative proteomic analysis by accurate mass retention time pairs. Anal Chem 2005, 77:2187-2000.
  • [20]Geromanos SJ, Vissers JP, Silva JC, Dorschel CA, Li GZ, Gorenstein MV, Bateman RH, Langridge JI: The detection, correlation, and comparison of peptide precursor and product ions from data independent LC-MS with data dependant LC-MS/MS. Proteomics 2009, 9:1683-1695.
  • [21]Li GZ, Vissers JP, Silva JC, Golick D, Gorenstein MV, Geromanos SJ: Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures. Proteomics 2009, 9:1696-1719.
  • [22]Curty N, Kubitschek-Barreira PH, Neves GW, Gomes D, Pizzatti L, Abdelhay E, Souza GH, Lopes-Bezerra LM: Discovering the infectome of human endothelial cells challenged with Aspergillus fumigatus applying a mass spectrometry label-free approach. J Proteomics 2014, 31:126-140.
  • [23]Levin Y, Hadetzky E, Bahn S: Quantification of proteins using data-independent analysis (MSE) in simple and complex samples: a systematic evaluation. Proteomics 2011, 11:3273-3287.
  • [24]Barinov A, Loux V, Hammani A, Nicolas P, Langella P, Ehrlich D, Maguin E, van de Guchte M: Prediction of surface exposed proteins in Streptococcus pyogenes, with a potential application to other Gram-positive bacteria. Proteomics 2009, 9:61-73.
  • [25]Conesa A, Gotz S, García-Gómez JM, Terol J, Talón M, Robles M: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 15:3674-3676.
  • [26]Soares SC, Abreu VA, Ramos RT, Cerdeira L, Silva A, Baumbach J, Trost E, Tauch A, Hirata R Jr, Mattos-Guaraldi AL, Miyoshi A, Azevedo V: PIPs: pathogenicity island prediction software. PLoS One 2012, 7:e30848.
  • [27]Rezende AM, Folador EL, Resende Dde M, Ruiz JC: Computational prediction of protein-protein interactions in Leishmania predicted proteomes. PLoS One 2012, 7:e51304.
  • [28]Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003, 13:2498-2504.
  • [29]Pauling J, Röttger R, Tauch A, Azevedo V, Baumbach J: CoryneRegNet 6.0 -Updated database content, new analysis methods and novel features focusing on community demands. Nucleic Acids Res 2012, 40:D610-614.
  • [30]Richardson AR, Soliven KC, Castor ME, Barnes PD, Libby SJ, Fang FC: The base excision repair system of Salmonella enterica serovar typhimurium counteracts DNA damage by host nitric oxide. PLoS Pathog 2009, 5:e1000451.
  • [31]Sedgwick B: Repairing DNA-methylation damage. Nat Rev Mol Cell Biol 2004, 5:148-157.
  • [32]Baharoglu Z, Mazel D: SOS, the formidable strategy of bacteria against aggressions. FEMS Microbiol Rev 2014, 38:1126-1145.
  • [33]Cano DA, Pucciarelli MG, García-del Portillo F, Casadesús J: Role of the recBCD recombination pathway in Salmonella virulence. J Bacteriol 2002, 184:592-595.
  • [34]Koskiniemi S, Andersson DI: Translesion DNA polymerases are required for spontaneous deletion formation in Salmonella typhimurium. Proc Natl Acad Sci U S A. 2009, 23:10248-10253.
  • [35]Butala M, Zgur-Bertok D, Busby SJ: The bacterial LexA transcriptional repressor. Cell Mol Life Sci 2009, 66:82-93.
  • [36]Voskuil MI, Bartek IL, Visconti K, Schoolnik GK: The response of Mycobacterium tuberculosis to reactive oxygen and nitrogen species. Front Microbiol 2011, 13:105.
  • [37]Green J, Paget MS: Bacterial redox sensors. Nat Rev Microbiol 2004, 2:954-966.
  • [38]Green J, Rolfe MD, Smith LJ: Transcriptional regulation of bacterial virulence gene expression by molecular oxygen and nitric oxide. Virulence 2014, 4:5(4).
  • [39]Singh A, Crossman DK, Mai D, Guidry L, Voskuil MI, Renfrow MB, Steyn AJ: Mycobacterium tuberculosis WhiB3 maintains redox homeostasis by regulating virulence lipid anabolism to modulate macrophage response. PLoS Pathog 2009, 5:e1000545.
  • [40]Chawla M, Parikh P, Saxena A, Munshi M, Mehta M, Mai D, Srivastava AK, Narasimhulu KV, Redding KE, Vashi N, Kumar D, Steyn AJ, Singh A: Mycobacterium tuberculosis WhiB4 regulates oxidative stress response to modulate survival and dissemination in vivo. Mol Microbiol 2012, 85:1148-1165.
  • [41]Larsson C, Luna B, Ammerman NC, Maiga M, Agarwal N, Bishai WR: Gene expression of Mycobacterium tuberculosis putative transcription factors WhiB1-7 in redox environments. PLoS One 2012, 7:e37516.
  • [42]Hobman JL: MerR family transcription activators: similar designs, different specificities. Mol Microbiol 2007, 63:1275-1278.
  • [43]McEwan AG, Djoko KY, Chen NH, Couñago RL, Kidd SP, Potter AJ, Jennings MP: Novel bacterial MerR-like regulators their role in the response to carbonyl and nitrosative stress. Adv Microb Physiol 2011, 58:1-22.
  • [44]Brown NL, Stoyanov JV, Kidd SP, Hobman JL: The MerR family of transcriptional regulators. FEMS Microbiol Rev 2003, 27:145-163.
  • [45]Maddocks SE, Oyston PC: Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Microbiology 2008, 154:3609-3623.
  • [46]Chen S, Wang H, Katzianer DS, Zhong Z, Zhu J: LysR family activator-regulated major facilitator superfamily transporters are involved in Vibrio cholerae antimicrobial compound resistance and intestinal colonisation. Int J Antimicrob Agents 2013, 41:188-192.
  • [47]Gonzalez-Flecha B, Demple B: Role for the oxyS gene in regulation of intracellular hydrogen peroxide in Escherichia coli. J Bacteriol 1999, 181:3833-3836.
  • [48]Verneuil N, Rincé A, Sanguinetti M, Posteraro B, Fadda G, Auffray Y, Hartke A, Giard JC: Contribution of a PerR-like regulator to the oxidative-stress response and virulence of Enterococcus faecalis. Microbiology 2005, 151:3997-4004.
  • [49]Lahiri A, Das P, Chakravortty D: The LysR-type transcriptional regulator Hrg counteracts phagocyte oxidative burst and imparts survival advantage to Salmonella enterica serovar Typhimurium. Microbiology 2008, 154:2837-2846.
  • [50]Reen FJ, Haynes JM, Mooij MJ, O'Gara F: A non-classical LysR-type transcriptional regulator PA2206 is required for an effective oxidative stress response in Pseudomonas aeruginosa. PLoS One 2013, 8:e54479.
  • [51]Comtois SL, Gidley MD, Kelly DJ: Role of the thioredoxin system and the thiol-peroxidases Tpx and Bcp in mediating resistance to oxidative and nitrosative stress in Helicobacter pylori. Microbiology 2003, 149:121-129.
  • [52]Brenot A, King KY, Janowiak B, Griffith O, Caparon MG: Contribution of glutathione peroxidase to the virulence of Streptococcus pyogenes. Infect Immun 2004, 72:408-413.
  • [53]Kalkowski I, Conrad R: Metabolism of nitric oxide in denitrifying Pseudomonas aeruginosa and nitrate-respiring Bacillus cereus. FEMS Microbiol Lett. 1991, 15:107-111.
  • [54]de Boer AP, van der Oost J, Reijnders WN, Westerhoff HV, Stouthamer AH, van Spanning RJ: Mutational analysis of the nor gene cluster which encodes nitric-oxide reductase from Paracoccus denitrificans. Eur J Biochem 1996, 15:592-600.
  • [55]Kakishima K, Shiratsuchi A, Taoka A, Nakanishi Y, Fukumori Y: Participation of nitric oxide reductase in survival of Pseudomonas aeruginosa in LPS-activated macrophages. Biochem Biophys Res Commun 2007, 6:587-591.
  • [56]Hendriks J, Oubrie A, Castresana J, Urbani A, Gemeinhardt S, Saraste M: Nitric oxide reductases in bacteria. Biochim Biophys Acta 2000, 15:266-273.
  • [57]Stevanin TM, Poole RK, Demoncheaux EA, Read RC: Flavohemoglobin Hmp protects Salmonella enterica serovar Typhimurium from nitric oxide-related killing by human macrophages. Infect Immun 2002, 70:4399-4405.
  • [58]Stevanin TM, Moir JW, Read RC: Nitric oxide detoxification systems enhance survival of Neisseria meningitidis in human macrophages and in nasopharyngeal mucosa. Infect Immun 2005, 73:3322-3329.
  • [59]Stern AM, Liu B, Bakken LR, Shapleigh JP, Zhu J: A novel protein protects bacterial iron-dependent metabolism from nitric oxide. J Bacteriol 2013, 195:4702-4708.
  • [60]Brown GC: Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome C oxidase. Biochim Biophys Acta 2001, 1:46-57.
  • [61]Kadenbach B: Intrinsic and extrinsic uncoupling of oxidative phosphorylation. Biochim Biophys Acta 2003, 5:77-94.
  • [62]Payne JW, Smith MW: Peptide transport by micro-organisms. Adv Microb Physiol 1994, 36:1-80.
  • [63]Mueller JH, Klotz AW: Pantothenic acid as a growth factor for the diphtheria bacillus. J Am Chem Soc 1938, 60:3086-3087.
  • [64]Mcllwain H: Pantothenic acid and the growth of Streptococcus haemolyticus. Br J Exp Pathol 1939, 20:330-333.
  • [65]Sassetti CM, Boyd DH, Rubin EJ: Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 2003, 48:77-84.
  文献评价指标  
  下载次数:19次 浏览次数:18次