期刊论文详细信息
BMC Medical Genomics
Completion of the swine genome will simplify the production of swine as a large animal biomedical model
Randall S Prather2  Lela K Riley2  John K Critser2  Kevin D Wells2  Jianguo Zhao2  Eiji Kobayashi3  Hiroshi Nagashima1  Simone Renner4  Jiude Mao2  Jeffery J Whyte2  Eckhard Wolf4  Eric M Walters2 
[1] Laboratory of Developmental Engineering, Meiji University, 1-1-1 Higashimita, Tama, Kawasaki, 214-8571, Japan;National Swine Resource and Research Center, University of Missouri, 920 E. Campus Dr, Columbia, MO, 65211, USA;Center for Development of Advanced Technology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi-ken, 329-0498, Japan;Molecular Animal Breeding and Biotechnology, Department of Veterinary Sciences and Laboratory for Functional Genome Analysis, Feoder-Lynen-Strasse 250, Munich, 81377, Germany
关键词: Human diseases;    Genetically engineered;    Biomedical model;    Pig;    Genomic;   
Others  :  1134558
DOI  :  10.1186/1755-8794-5-55
 received in 2011-06-08, accepted in 2011-10-28,  发布年份 2012
PDF
【 摘 要 】

Background

Anatomic and physiological similarities to the human make swine an excellent large animal model for human health and disease.

Methods

Cloning from a modified somatic cell, which can be determined in cells prior to making the animal, is the only method available for the production of targeted modifications in swine.

Results

Since some strains of swine are similar in size to humans, technologies that have been developed for swine can be readily adapted to humans and vice versa. Here the importance of swine as a biomedical model, current technologies to produce genetically enhanced swine, current biomedical models, and how the completion of the swine genome will promote swine as a biomedical model are discussed.

Conclusions

The completion of the swine genome will enhance the continued use and development of swine as models of human health, syndromes and conditions.

【 授权许可】

   
2012 Walters et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150306020140426.pdf 681KB PDF download
Figure 2. 39KB Image download
Figure 1. 65KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Aigner B, Renner S, Kessler B, Klymiuk N, Kurome M, Wunsch A, Wolf E: Transgenic pigs as models for translational biomedical research. J Mol Med 2010, 88:653-664.
  • [2]Lunney JK: Advances in swine biomedical model genomics. Int J Biol Sci 2007, 3:179-184.
  • [3]Shultz LD, Ishikawa F, Greiner DL: Humanized mice in translational biomedical research. Nat Rev Immunol 2007, 7:118-130.
  • [4]Hammer RE, Pursel VG, Rexroad CE Jr, RJ W, Bolt DJ, Ebert KM, Palmiter RD, Brinster RL: Production of transgenic rabbits, sheep and pigs by microinjection. Nature 1985, 315:680-683.
  • [5]Walters EM, Bauer BA, Franklin CL, Evans TJ, Bryda EC, Riley LK, Critser JK: Mutational insertion of a ROSA26-EGFP transgene leads to defects in spermiogenesis and male infertility in mice. Comp Med 2009, 59:545-552.
  • [6]Rijkers T, Peetz A, Ruther U: Insertional mutagenesis in transgenic mice. Transgenic Res 1994, 3:203-215.
  • [7]Brem G, Besenfelder U, Aigner B, Muller M, Liebl I, Schutz G, Montoliu L: YAC transgenesis in farm animals: Rescue of albinism in rabbits. Mol Reprod Dev 1996, 44:56-62.
  • [8]McKnight RA, Spencer M, Wall RJ, Hennighausen L: Severe position effects imposed on a 1 kb mouse whey acidic protein gene promoter are overcome by heterologous matrix attachment regions. Mol Reprod Dev 1996, 44:179-184.
  • [9]Barash I, Ilan N, Kari R, Hurwitz DR, Shani M: Co-integration of beta-lactoglobulin/human serum albumin hybrid genes with the entire beta-lactoglobulin gene or the matrix attachment region element: repression of human serum albumin and beta-lactoglobulin expression in the mammary gland and dual regulation of the transgenes. Mol Reprod Dev 1996, 45:421-430.
  • [10]Esteban MA, Xu J, Yang J, Peng M, Qin D, Li W, Jiang Z, Chen J, Deng K, Zhong M, et al.: Generation of induced pluripotent stem cell lines from Tibetan miniature pig. J Biol Chem 2009, 284:17634-17640.
  • [11]Ezashi T, Telugu BP, Alexenko AP, Sachdev S, Sinha S, Roberts RM: Derivation of induced pluripotent stem cells from pig somatic cells. Proc Natl Acad Sci U S A 2009, 106:10993-10998.
  • [12]Wu Z, Chen J, Ren J, Bao L, Liao J, Cui C, Rao L, Li H, Gu Y, Dai H, et al.: Generation of Pig Induced Pluripotent Stem Cells with a Drug-Inducible System. J Mol Cell Biol 2009, 1:46-54.
  • [13]Lai L, Kolber-Simonds D, Park KW, Cheong HT, Greenstein JL, Im GS, Samuel M, Bonk A, Rieke A, Day BN: Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 2002, 295:1089-1092.
  • [14]Rogers CS, Hao Y, Rokhlina T, Samuel M, Stoltz DA, Li Y, Petroff E, Vermeer DW, Kabel AC, Yan Z, et al.: Production of CFTR-null and CFTR-DeltaF508 heterozygous pigs by adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer. J Clin Invest 2008, 118:1571-1577.
  • [15]Rogers CS, Stoltz DA, Meyerholz DK, Ostedgaard LS, Rokhlina T, Taft PJ, Rogan MP, Pezzulo AA, Karp PH, Itani OA, et al.: Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science 2008, 321:1837-1841.
  • [16]Ramsoondar J, Mendicino M, Phelps C, Vaught T, Ball S, Monahan J, Chen S, Dandro A, Boone J, Jobst P, et al.: Targeted disruption of the porcine immunoglobulin kappa light chain locus. Transgenic Res 2010, 20:643-653.
  • [17]Mendicino M, Ramsoondar J, Phelps C, Vaught T, Ball S, Leroith T, Monahan J, Chen S, Dandro A, Boone J, et al.: Generation of antibody- and B cell-deficient pigs by targeted disruption of the J-region gene segment of the heavy chain locus. Transgenic Res 2011, 20:625-641.
  • [18]Lorson M, Spate L, Samuel M, Murphy C, Lorson C, Prather R, Wells K: Disruption of the Survival Motor Neuron gene in pigs using ssDNA. Transgenic Res 2011, 20:1293-1304.
  • [19]Whyte JJ, Zhao J, Wells KD, Samuel MS, Whitworth KM, Walters EM, Laughlin MH, Prather RS: Gene targeting with zinc finger nucleases to produce cloned eGFP knockout pigs. Mol Reprod Dev 2011, 78:2.
  • [20]Yang D, Yang H, Li W, Zhao B, Ouyang Z, Liu Z, Zhao Y, Fan N, Song J, Tian J, et al.: Generation of PPAR[gamma] mono-allelic knockout pigs via zinc-finger nucleases and nuclear transfer cloning. Cell Res 2011, 21:979-982.
  • [21]Whitworth KM, Prather RS: Somatic cell nuclear transfer efficiency: how can it be improved through nuclear remodeling and reprogramming? Mol Reprod Dev 2010, 77:1001-1015.
  • [22]Thein SL, Menzel S: Discovering the genetics underlying foetal haemoglobin production in adults. Br J Haematol 2009, 145:455-467.
  • [23]Stoltz DA, Meyerholz DK, Pezzulo AA, Ramachandran S, Rogan MP, Davis GJ, Hanfland RA, Wohlford-Lenane C, Dohrn CL, Bartlett JA, et al.: Cystic fibrosis pigs develop lung disease and exhibit defective bacterial eradication at birth. Sci Transl Med 2010, 2:29-31.
  • [24]Swanson KS, Mazur MJ, Vashisht K, Rund LA, Beever JE, Counter CM, Schook LB: Genomics and Clinical Medicine: Rationale for Creating and Effectively Evaluating Animal Models. Exp Biol Med 2004, 229:866-875.
  • [25]Douglas WR: Of pigs and men and research: a review of applications and analogies of the pig, sus scrofa, in human medical research. Space Life Sci 1972, 3:226-234.
  • [26]Larsen MO, Rolin B: Use of the Gottingen minipig as a model of diabetes, with special focus on type 1 diabetes research. ILAR J 2004, 45:303-313.
  • [27]Johnson DK, Wisner ER, Griffey SM, Vessey AR, Haley PJ: Inclair miniature swine melanoma as a model for evaluating novel lymphography contrast agents. In Advances in swine in biomedical research. Edited by Tumbleson ME, Schook L. New York City: Plenum Press; 1996:607-612.
  • [28]Du ZQ, Vincent-Naulleau S, Gilbert H, Vignoles F, Crechet F, Shimogiri T, Yasue H, Leplat JJ, Bouet S, Gruand J, et al.: Detection of novel quantitative trait loci for cutaneous melanoma by genome-wide scan in the MeLiM swine model. Int J Cancer 2007, 120:303-320.
  • [29]Grunwald KA, Schueler K, Uelmen PJ, Lipton BA, Kaiser M, Buhman K, Attie AD: Identification of a novel Arg– > Cys mutation in the LDL receptor that contributes to spontaneous hypercholesterolemia in pigs. J Lipid Res 1999, 40:475-485.
  • [30]Quilter CR, Gilbert CL, Oliver GL, Jafer O, Furlong RA, Blott SC, Wilson AE, Sargent CA, Mileham A, Affara NA: Gene expression profiling in porcine maternal infanticide: a model for puerperal psychosis. Am J Med Genet B Neuropsychiatr Genet 2008, 147B:1126-1137.
  • [31]Egidy G, Jule S, Bosse P, Bernex F, Geffrotin C, Vincent-Naulleau S, Horak V, Sastre-Garau X, Panthier JJ: Transcription analysis in the MeLiM swine model identifies RACK1 as a potential marker of malignancy for human melanocytic proliferation. Mol Cancer 2008, 7:34. BioMed Central Full Text
  • [32]Archibald A, Bolund L, Churcher C, Fredholm M, Groenen M, Harlizius B, Lee KT, Milan D, Rogers J, Rothschild M, et al.: Pig genome sequence - analysis and publication strategy. BMC Genomics 2010, 11:438. BioMed Central Full Text
  • [33]Wernersson R, Schierup MH, Jorgensen FG, Gorodkin J, Panitz F, Staerfeldt HH, Christensen OF, Mailund T, Hornshoj H, Klein A, et al.: Pigs in sequence space: a 0.66X coverage pig genome survey based on shotgun sequencing. BMC Genomics 2005, 6-70.
  • [34]Cabot RA, Kuhholzer B, Chan AW, Lai L, Park KW, Chong KY, Schatten G, Murphy CN, Abeydeera LR, Day BN, et al.: Transgenic pigs produced using in vitro matured oocytes infected with a retroviral vector. Anim Biotechnol 2001, 12:205-214.
  • [35]Park KW, Cheong HT, Lai L, Im GS, Kuhholzer B, Bonk A, Samuel M, Rieke A, Day BN, Murphy CN, et al.: Production of nuclear transfer-derived swine that express the enhanced green fluorescent protein. Anim Biotechnol 2001, 12:173-181.
  • [36]Hofmann A, Kessler B, Ewerling S, Weppert M, Vogg B, Ludwig H, Stojkovic M, Boelhauve M, Brem G, Wolf E, et al.: Efficient transgenesis in farm animals by lentiviral vectors. EMBO Rep 2003, 4:1054-1060.
  • [37]Whitelaw CB, Radcliffe PA, Ritchie WA, Carlisle A, Ellard FM, Pena RN, Rowe J, Clark AJ, King TJ, Mitrophanous KA: Efficient generation of transgenic pigs using equine infectious anaemia virus (EIAV) derived vector. FEBS Lett 2004, 571:233-236.
  • [38]Lavitrano M, Busnelli M, Cerrito MG, Giovannoni R, Manzini S, Vargiolu A: Sperm-mediated gene transfer. Reprod Fertil Dev 2006, 18:19-23.
  • [39]Ahn KS, Won JY, Park JK, Sorrell AM, Heo SY, Kang JH, Woo JS, Choi BH, Chang WK, Shim H: Production of human CD59-transgenic pigs by embryonic germ cell nuclear transfer. Biochem Biophys Res Commun 2010, 400:667-672.
  • [40]Carter DB, Lai L, Park KW, Samuel M, Lattimer JC, Jordan KR, Estes DM, Besch-Williford C, Prather RS: Phenotyping of transgenic cloned piglets. Cloning Stem Cells 2002, 4:131-145.
  • [41]Zhu H, Tamot B, Quinton M, Walton J, Hacker RR, Li J: Influence of tissue origins and external microenvironment on porcine foetal fibroblast growth, proliferative life span and genome stability. Cell Prolif 2004, 37:255-266.
  • [42]Prather RS, Shen M, Dai Y: Genetically modified pigs for medicine and agriculture. Biotechnol Genet Eng Rev 2008, 25:245-265.
  • [43]Niemann H, Tian XC, King WA, Lee RS: Epigenetic reprogramming in embryonic and foetal development upon somatic cell nuclear transfer cloning. Reproduction 2008, 135:151-163.
  • [44]Zhao J, Whyte J, Prather RS: Effect of epigenetic regulation during swine embryogenesis and on cloning by nuclear transfer. Cell Tissue Res 2010, 341:13-21.
  • [45]Zhao J, Hao Y, Ross JW, Spate LD, Walters EM, Samuel MS, Rieke A, Murphy CN, Prather RS: Histone deacetylase inhibitors improve in vitro and in vivo developmental competence of somatic cell nuclear transfer porcine embryos. Cell Reprogram 2010, 12:75-83.
  • [46]Zhao J, Ross JW, Hao Y, Spate LD, Walters EM, Samuel MS, Rieke A, Murphy CN, Prather RS: Significant improvement in cloning efficiency of an inbred miniature pig by histone deacetylase inhibitor treatment after somatic cell nuclear transfer. Biol Reprod 2009, 81:525-530.
  • [47]Das ZC, Gupta MK, Uhm SJ, Lee HT: Increasing Histone Acetylation of Cloned Embryos, But Not Donor Cells, by Sodium Butyrate Improves Their In Vitro Development in Pigs. Cellular Reprogramming (Formerly "Cloning and Stem Cells") 2010, 12:95-104.
  • [48]Enright BP, Sung LY, Chang CC, Yang X, Tian XC: Methylation and acetylation characteristics of cloned bovine embryos from donor cells treated with 5-aza-2'-deoxycytidine. Biol Reprod 2005, 72:944-948.
  • [49]Jeong YS, Yeo S, Park JS, Koo DB, Chang WK, Lee KK, Kang YK: DNA methylation state is preserved in the sperm-derived pronucleus of the pig zygote. Int J Dev Biol 2007, 51:707-714.
  • [50]Whitworth KM, Zhao J, Spate LD, Li R, Prather RS: Scriptaid corrects gene expression of a few aberrantly reprogrammed transcripts in nuclear transfer pig blastocyst stage embryos. Cell Reprogram 2011, 13:191-204.
  • [51]Fischer KM: Transgenic domestic animals provide an animal model for rheumatoid arthritis. Med Hypotheses 1992, 38:240-243.
  • [52]Petters RM, Alexander CA, Wells KD, Collins EB, Sommer JR, Blanton MR, Rojas G, Hao Y, Flowers WL, Banin E: Genetically engineered large animal model for studying cone photoreceptor survival and degeneration in retinitis pigmentosa. Nat Biotechnol 1997, 15:965-970.
  • [53]Olsson JE, Gordon JW, Pawlyk BS, Roof D, Hayes A, Molday RS, Mukai S, Cowley GS, Berson EL, Dryja TP: Transgenic mice with a rhodopsin mutation (Pro23His): a mouse model of autosomal dominant retinitis pigmentosa. Neuron 1992, 9:815-830.
  • [54]Whyte JJ, Prather RS: Genetic modifications of pigs for medicine and agriculture. Mol Reprod Devin press
  • [55]Andersen DH: Cystic fibrosis of the pancreas and its relationship to celiac disease; a clinical and pathological study. Am J Dis Child 2011, 56:344.
  • [56]Rogers CS, Abraham WM, Brogden KA, Engelhardt JF, Fisher JT, McCray PB Jr, McLennan G, Meyerholz DK, Namati E, Ostedgaard LS, et al.: The porcine lung as a potential model for cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 2008, 295:L240-L263.
  • [57]Rogers CS, Stoltz DA, Meyerholz DK, Ostedgaard LS, Rokhlina T, Taft PJ, Rogan MP, Pezzulo AA, Karp PH, Itani OA, et al.: Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science 2008, 321:1837-1841.
  • [58]Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL, et al.: Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 1989, 245:1066-1073.
  • [59]Grubb BR, Boucher RC: Pathophysiology of Gene-Targeted Mouse Models for Cystic Fibrosis. Physiol Rev 1999, 79:S193-S214.
  • [60]Guilbault C, Saeed Z, Downey GP, Radzioch D: Cystic Fibrosis Mouse Models. Am J Respir Cell Mol Biol 2007, 36:1-7.
  • [61]Welsh MJ, Rogers CS, Stoltz DA, Meyerholz DK, Prather RS: Development of a porcine model of cystic fibrosis. Trans Am Clin Climatol Assoc 2009, 120:149-162.
  • [62]Ostedgaard LS, Meyerholz DK, Chen JH, Pezzulo AA, Karp PH, Rokhlina T, Ernst SE, Hanfland RA, Reznikov LR, Ludwig PS, et al.: The {Delta}F508 Mutation Causes CFTR Misprocessing and Cystic Fibrosis-Like Disease in Pigs. Sci Transl Med 2011, 3:74. ra24
  • [63]Rogan MP, Reznikov LR, Pezzulo AA, Gansemer ND, Samuel M, Prather RS, Zabner J, Fredericks DC, McCray PB Jr, Welsh MJ, et al.: Pigs and humans with cystic fibrosis have reduced insulin-like growth factor 1 (IGF1) levels at birth. Proc Natl Acad Sci U S A 2010, 107:20571-20575.
  • [64]Yang YG, Sykes M: Xenotransplantation: current status and a perspective on the future. Nat Rev Immunol 2007, 07:519-531.
  • [65]Dai Y, Vaught TD, Boone J, Chen SH, Phelps CJ, Ball S, Monahan JA, Jobst PM, McCreath KJ, Lamborn AE, et al.: Targeted disruption of the [alpha]1,3-galactosyltransferase gene in cloned pigs. Nat Biotech 2002, 20:251-255.
  • [66]Harrison SJ, Guidolin A, Faast R, Crocker LA, Giannakis C, d'Apice AJ, Nottle MB, Lyons I: Efficient generation of alpha(1,3) galactosyltransferase knockout porcine fetal fibroblasts for nuclear transfer. Transgenic Res 2002, 11:143-150.
  • [67]Kolber-Simonds D, Lai L, Watt SR, Denaro M, Arn S, Augenstein ML, Betthauser J, Carter DB, Greenstein JL, Hao Y, et al.: Production of alpha-1,3-galactosyltransferase null pigs by means of nuclear transfer with fibroblasts bearing loss of heterozygosity mutations. Proc Natl Acad Sci U S A 2004, 101:7335-7340.
  • [68]Phelps CJ, Koike C, Vaught TD, Boone J, Wells KD, Chen SH, Ball S, Specht SM, Polejaeva IA, Monahan JA: Production of alpha 1,3-galactosyltransferase-deficient pigs. Science 2003, 299:411-414.
  • [69]Ramsoondar JJ, Machaty Z, Costa C, Williams BL, Fodor WL, Bondioli KR: Production of alpha 1,3-galactosyltransferase-knockout cloned pigs expressing human alpha 1,2-fucosylosyltransferase. Biol Reprod 2003, 69:437-445.
  • [70]Sharma A, Naziruddin B, Cui C, Martin MJ, Xu H, Wan H, Lei Y, Harrison C, Yin J, Okabe J, et al.: Pig cells that lack the gene for alpha1-3 galactosyltransferase express low levels of the gal antigen. Transplantation 2003, 75:430-436.
  • [71]Takahagi Y, Fujimura T, Miyagawa S, Nagashima H, Shigehisa T, Shirakura R, Murakami H: Production of alpha 1,3-galactosyltransferase gene knockout pigs expressing both human decay-accelerating factor and N-acetylglucosaminyltransferase III. Mol Reprod Dev 2005, 71:331-338.
  • [72]Watt SR, Betthauser JM, Augenstein ML, Childs LA, Mell GD, Forsberg EJ, Eisen A: Direct and rapid modification of a porcine xenoantigen gene (GGTA1). Transplantation 2006, 82:975-978.
  • [73]Klymiuk N, Aigner B, Brem G, Wolf E: Genetic modification of pigs as organ donors for xenotransplantation. Mol Reprod Dev 2010, 77:209-221.
  • [74]Ramsoondar J, Vaught T, Ball S, Mendicino M, Monahan J, Jobst P, Vance A, Duncan J, Wells K, Ayares D: Production of transgenic pigs that express porcine endogenous retrovirus small interfering RNAs. Xenotransplantation 2009, 16:164-180.
  • [75]Herring C, Quinn G, Bower R, Parsons N, Logan NA, Brawley A, Elsome K, Whittam A, Fernandez-Suarez XM, Cunningham D, et al.: Mapping full-length porcine endogenous retroviruses in a large white pig. J Virol 2001, 75:12252-12265.
  • [76]Patience C, Takeuchi Y, Weiss RA: Infection of human cells by an endogenous retrovirus of pigs. Nat Med 1997, 3:282-286.
  • [77]Ekser B, Gridelli B, Tector AJ, Cooper DK: Pig liver xenotransplantation as a bridge to allotransplantation: which patients might benefit? Transplantation 2009, 88:1041-1049.
  • [78]Oropeza M, Petersen B, Carnwath JW, Lucas-Hahn A, Lemme E, Hassel P, Herrmann D, Barg-Kues B, Holler S, Queisser AL, et al.: Transgenic expression of the human A20 gene in cloned pigs provides protection against apoptotic and inflammatory stimuli. Xenotransplantation 2009, 16:522-534.
  • [79]Nauck MA, Heimesaat MM, Orskov C, Holst JJ, Ebert R, Creutzfeldt W: Preserved incretin activity of glucagon-like peptide 1 [7–36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest 1993, 91:301-307.
  • [80]Renner S, Fehlings C, Herbach N, Hofmann A, von Waldthausen DC, Kessler B, Ulrichs K, Chodnevskaja I, Moskalenko V, Amselgruber W, et al.: Glucose intolerance and reduced proliferation of pancreatic beta-cells in transgenic pigs with impaired glucose-dependent insulinotropic polypeptide function. Diabetes 2010, 59:1228-1238.
  • [81]Fonseca VA, Zinman B, Nauck MA, Goldfine AB, Plutzky J: Confronting the type 2 diabetes epidemic: the emerging role of incretin-based therapies. Am J Med 2010, 123:S2-S10.
  • [82]Shaffer C: Incretin mimetics vie for slice of type 2 diabetes market. Nat Biotechnol 2007, 25:263.
  • [83]Baggiio LL, Drucker DJ: Biology of incretins: GLP-1 and GIP. Gastroenterology 2007, 132:2131-2157.
  • [84]Brinster RL, Chen HY, Trumbauer M, Senear AW, Warren R, Palmiter RD: Somatic expression of herpes thymidine kinase in mice following injection of a fusion gene into eggs. Cell 1981, 27:223-231.
  • [85]Costantini F, Lacy E: Introduction of a rabbit beta-globin gene into the mouse germ line. Nature 1981, 294:92-94.
  • [86]Gordon JW, Scangos GA, Plotkin DJ, Barbosa JA, Ruddle FH: Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci U S A 1980, 77:7380-7384.
  • [87]Wagner EF, Stewart TA, Mintz B: The human beta-globin gene and a functional viral thymidine kinase gene in developing mice. Proc Natl Acad Sci U S A 1981, 78:5016-5020.
  • [88]Wagner TE, Hoppe PC, Jollick JD, Scholl DR, Hodinka RL, Gault JB: Microinjection of a rabbit beta-globin gene into zygotes and its subsequent expression in adult mice and their offspring. Proc Natl Acad Sci U S A 1981, 78:6376-6380.
  • [89]Hyun S, Lee G, Kim D, Kim H, Lee S, Nam D, Jeong Y, Kim S, Yeom S, Kang S, et al.: Production of nuclear transfer-derived piglets using porcine fetal fibroblasts transfected with the enhanced green fluorescent protein. Biol Reprod 2003, 69:1060-1068.
  • [90]Lee GS, Kim HS, Hyun SH, Lee SH, Jeon HY, Nam DH, Jeong YW, Kim S, Kim JH, Han JY, et al.: Production of transgenic cloned piglets from genetically transformed fetal fibroblasts selected by green fluorescent protein. Theriogenology 2005, 63:973-991.
  • [91]Watanabe S, Iwamoto M, Suzuki S, Fuchimoto D, Honma D, Nagai T, Hashimoto M, Yazaki S, Sato M, Onishi A: A novel method for the production of transgenic cloned pigs: electroporation-mediated gene transfer to non-cultured cells and subsequent selection with puromycin. Biol Reprod 2005, 72:309-315.
  • [92]Brinster RL, Chen HY, Trumbauer ME, Yagle MK, Palmiter RD: Factors affecting the efficiency of introducing foreign DNA into mice by microinjecting eggs. Proc Natl Acad Sci USA 1985, 82:4438-4442.
  • [93]Garrick D, Fiering S, Martin DI, Whitelaw E: Repeat-induced gene silencing in mammals. Nat Genet 1998, 18:56-59.
  • [94]Leahy P, Carmichael GG, Rossomando EF: Transcription from plasmid expression vectors is increased up to 14-fold when plasmids are transfected as concatemers. Nucleic Acids Res 1997, 25:449-450.
  • [95]Capecchi MR: The new mouse genetics: altering the genome by gene targeting. Trends Genet 1989, 5:70-76.
  • [96]Capecchi MR: Altering the genome by homologous recombination. Science 1989, 244:1288-1292.
  • [97]Koller BH, Smithies O: Altering genes in animals by gene targeting. Annu Rev Immunol 1992, 10:705-730.
  • [98]Capecchi MR: How close are we to implementing gene targeting in animals other than the mouse? Proc Natl Acad Sci U S A 2000, 97:956-957.
  • [99]Nagy A: Cre recombinase: the universal reagent for genome tailoring. Genesis 2000, 26:99-109.
  • [100]Watanabe M, Umeyama K, Matsunari H, Takayanagi S, Haruyama E, Nakano K, Fujiwara T, Ikezawa Y, Nakauchi H, Nagashima H: Knockout of exogenous EGFP gene in porcine somatic cells using zinc-finger nucleases. Biochem Biophys Res Commun 2010, 402:14-18.
  • [101]Maeder ML, Thibodeau-Beganny S, Sander JD, Voytas DF, Joung JK: Oligomerized pool engineering (OPEN): an 'open-source' protocol for making customized zinc-finger arrays. Nat Protoc 2009, 4:1471-1501.
  • [102]Remy S, Tesson L, Menoret S, Usal C, Scharenberg AM, Anegon I: Zinc-finger nucleases: a powerful tool for genetic engineering of animals. Transgenic Res 2010, 19:363-371.
  • [103]Wright DA, Thibodeau-Beganny S, Sander JD, Winfrey RJ, Hirsh AS, Eichtinger M, Fu F, Porteus MH, Dobbs D, Voytas DF, et al.: Standardized reagents and protocols for engineering zinc finger nucleases by modular assembly. Nat Protoc 2006, 1:1637-1652.
  • [104]Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, Jamieson AC, Porteus MH, Gregory PD, Holmes MC: Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 2005, 435:646-651.
  • [105]Carroll D, Beumer KJ, Morton JJ, Bozas A, Trautman JK: Gene targeting in Drosophila and Caenorhabditis elegans with zinc-finger nucleases. Methods Mol Biol 2008, 435:63-77.
  • [106]Jakobsen JE, Li J, Kragh PM, Moldt B, Lin L, Liu Y, Schmidt M, Winther KD, Schyth BD, Holm IE, et al.: Pig transgenesis by Sleeping Beauty DNA transposition. Transgenic Res 2011, 20:533-535.
  • [107]Clark K, Carlson D, Fahrenkrug S: Pigs taking wing with transposons and recombinases. Genome Biol 2007, 8:S13. BioMed Central Full Text
  • [108]Davidson AE, Balciunas D, Mohn D, Shaffer J, Hermanson S, Sivasubbu S, Cliff MP, Hackett PB, Ekker SC: Efficient gene delivery and gene expression in zebrafish using the Sleeping Beauty transposon. Dev Biol 2003, 263:191-202.
  • [109]Ding S, Wu X, Li G, Han M, Zhuang Y, Xu T: Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 2005, 122:473-483.
  • [110]Dupuy AJ, Clark K, Carlson CM, Fritz S, Davidson AE, Markley KM, Finley K, Fletcher CF, Ekker SC, Hackett PB: Mammalian germ-line transgenesis by transposition. Proc Natl Acad Sci USA 2002, 99:4495-4499.
  • [111]Hamlet MR, Yergeau DA, Kuliyev E, Takeda M, Taira M, Kawakami K, Mead PE: Tol2 transposon-mediated transgenesis in Xenopus tropicalis. Genesis 2006, 44:438-445.
  • [112]Kawakami K, Shima A, Kawakami N: Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. Proc Natl Acad Sci USA 2000, 97:11403-11408.
  • [113]Clark KJ, Carlson DF, Foster LK, Kong BW, Foster DN: Enzymatic engineering of the porcine genome with transposons and recombinases. BMC Biotechnol 2007, 7:42. BioMed Central Full Text
  • [114]Carlson D, Garbe J, Tan W, Martin M, Dobrinsky J, Hackett P, Clark K, Fahrenkrug S: Strategies for selection marker-free swine transgenesis using the Sleeping Beauty transposon system. Transgenic Res 2011, 20:1-13.
  • [115]Carlson DF, Geurts AM, Garbe JR, Park CW, Rangel-Filho A, O'Grady SM, Jacob HJ, Steer CJ, Largaespada DA, Fahrenkrug SC: Efficient mammalian germline transgenesis by cis-enhanced Sleeping Beauty transposition. Transgenic Res 2011, 20:29-45.
  文献评价指标  
  下载次数:18次 浏览次数:25次